二叉树三种遍历的非递归算法笔记



文件信息
文件来源  
文件作者  
更新时间 2005-5-8 10:58:33 
添加编辑 viewsnake 

辅助信息
打印功能 打印本文
背景颜色 杏黄 秋褐 胭红 芥绿 天蓝 雪青 炭灰 奶白
字体大小 特大号字 大号字 中号字 小号字
免责声明 本网站所有文章均来自网络,仅提供预览形式,不提供纸张形式,若涉及到版权的文章,请购买正版,毕竟在电脑上看也不舒服啊,呵呵,这是viewsnake个人网站,纯粹交流学习资料的地方。无商业行为。
选择更多免费考研资料:
阅读正文内容

二叉树三种遍历的非递归算法(背诵版)

本贴给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。


1.先序遍历非递归算法
#define maxsize 100
typedef struct
{
    Bitree Elem[maxsize];
    int top;
}SqStack;

void PreOrderUnrec(Bitree t)
{
    SqStack s;
    StackInit(s);
    p=t;
   
    while (p!=null || !StackEmpty(s))
    {
        while (p!=null)             //遍历左子树
        {
            visite(p->data);
            push(s,p);
            p=p->lchild;      
        }//endwhile
       
        if (!StackEmpty(s))         //通过下一次循环中的内嵌while实现右子树遍历
        {
            p=pop(s);
            p=p->rchild;       
        }//endif
               
    }//endwhile
   
}//PreOrderUnrec

2.中序遍历非递归算法
#define maxsize 100
typedef struct
{
    Bitree Elem[maxsize];
    int top;
}SqStack;

void InOrderUnrec(Bitree t)
{
    SqStack s;
    StackInit(s);
    p=t;
    while (p!=null || !StackEmpty(s))
    {
        while (p!=null)             //遍历左子树
        {
            push(s,p);
            p=p->lchild;
        }//endwhile
       
        if (!StackEmpty(s))
        {
            p=pop(s);
            visite(p->data);        //访问根结点
            p=p->rchild;            //通过下一次循环实现右子树遍历
        }//endif  
   
    }//endwhile

}//InOrderUnrec


3.后序遍历非递归算法
#define maxsize 100
typedef enum{L,R} tagtype;
typedef struct
{
    Bitree ptr;
    tagtype tag;
}stacknode;

typedef struct
{
    stacknode Elem[maxsize];
    int top;
}SqStack;

void PostOrderUnrec(Bitree t)
{
    SqStack s;
    stacknode x;
    StackInit(s);
    p=t;
   
    do
    {
        while (p!=null)        //遍历左子树
        {
            x.ptr = p;
            x.tag = L;         //标记为左子树
            push(s,x);
            p=p->lchild;
        }
   
        while (!StackEmpty(s) && s.Elem[s.top].tag==R) 
        {
            x = pop(s);
            p = x.ptr;
            visite(p->data);   //tag为R,表示右子树访问完毕,故访问根结点      
        }
       
        if (!StackEmpty(s))
        {
            s.Elem[s.top].tag =R;     //遍历右子树
            p=s.Elem[s.top].ptr->rchild;       
        }   
    }while (!StackEmpty(s));
}//PostOrderUnrec



<<<返回上一页 <<<返回网站首页
<<<您的位置:首页>考研经验>考研笔记>计算机工程笔记>正文