第一节 生物能学的几个概念
一、 化学反应中的自由能变化及其意义
1、 化学反应中的自由能
自由能:在一个体系中,能够用来做有用功的那一部分能量称自由能,用符号G表示。
在恒温、恒压下进行的化学反应,其产生有用功的能力可以用反应前后自由能的变化来衡量。
自由能的变化:△G = G 产物 — G反应物 = △H _ T△S
△G 代表体系的自由能变化,△H代表体系的焓变化,T代表体系的绝对温度,△S代表体系的熵变化。
焓与熵都是体系的状态函数。
焓代表体系的内能与压力P*体积V之和:H = U + P*V dH = dU + P*dV + V*dP
熵代表体系中能量的分散程度,也就是体系的无序程度:△S = dQ/T ,△S = △S体系+△S环境 ,只有△S≥0,过程才能自发进行。
2、 △G是判断一个过程能否自发进行的根据
△G<0,反应能自发进行,能做有用功。
△G>0,反应不能自发进行,必须供给能量。
△G=0,反应处于平衡状态。
一个放热反应(或吸热反应)的总热量的变化(△H),不能作为此反应能否自发进行的判据,只有自由能的变化才是唯一准确的指标。
△G<0仅是反应能自发进行的必要条件,有的反应还需催化剂才能进行,催化剂(酶)只能催化自由能变化为负值的反应,如果一个反应的自由能变化为正值,酶也无能为力。
当△G为正值时,反应体系为吸能反应,此时只有与放能反应相偶联,反应才能进行。
二、 标准自由能变化及其与化学反应平衡常数的关系
aA+bB → cC+dD
标准自由内能变化:在规定的标准条件下的自由能变化,用△G°表示。
标准条件:25℃,参加反应的物质的浓度都是1mol∕L(气体则是1大气压)。若同时定义pH =7.0,则标准自由能变化用△G°′表示。
对于一个溶液中的化学反应:
aA bB → cC + dD
当反应达到平衡时,△G = 0
K/是化学反应的平衡常数,因此,△G°/ 也是一个常数。
常见物质的标准生成自由能△G°′已经列在各种化学手册中,可以根据△G°′= -RT lnK的公式求出平衡常数K′。
P15 举例说明如何用K/求出△G o / 和△G
从例子可以看出△G o / 和△G实际上是两个不同条件下的自由能变化值。
(1) △G o /是标准条件下的自由能变化,既反应物A、B、C、D的起始浓度都为1mol/L,温度为25℃,pH=7.0时的△G。每一个化学反应都有其特定的标准自由能变化(既△G o /),是一个固定值,
△G是任意给定条件下的自由能变化,它是反应物A、B、C、D的起始浓度、温度、pH的状态函数,在一个自发进行的化学反应中,自由能总是在降低,△G总是负值,随着反应向平衡点的趋近,△G的绝对值逐渐缩小,直到为0。
(2) 从△G o / = -RT lnK/,可以求出K/及△G o /,根据△G o /、△G 与K/可以判断任何条件下反应进行的方向及程度。
三、 自由能变化的可加和性。
在偶联的几个化学反应中,自由能的总变化等于每一步反应自由能变化的总和。
例如:Glc+ATP→G—6—P+ADP(总反应)
第一步,Glc+Pi→G—6—P+H2O,此反应不能自发进行。
第二步,ATP+H2O→ADP+Pi
总反应:Glc+ATP→G—6—P+ADP.
因此,一个热力学上不能进行的反应,可与其它反应偶联,驱动整个反应进行。此类反应在生物体内是很普遍的。
四、 高能磷酸化合物
高能化合物:水解时释放5000卡/mol及以上自由能的化合物。
高能磷酸化合物:水解每摩尔磷酸基能释放5000cal以上能量的磷酸化合物。
P21 表10-2 某些磷酸化合物水解时的标准自由能变化。
(一) 高能化合物的类型 P18—19
1、 磷氧键型。
(1)、 酰基磷酸化合物。
3—磷酸甘油酸磷酸,乙酰磷酸,氨甲酰磷酸,酰基腺苷酸,氨酰腺苷酸。
(2)、 焦磷酸化合物。
无机焦磷酸,ATP,ADP
(3)、 烯醇式磷酸化合物。
磷酸烯醇式丙酮酸。
2、 氮磷键型。
磷酸肌酸,磷酸精氨酸。
3、 硫酯键型。
3’一磷酸腺苷一5’一磷酰硫酸,酰基辅酶A。
4、 甲硫键型。
S一腺苷甲硫氨酸。
(二) ATP的特殊的作用。
1、 是细胞内产能反应和需能反应的化学偶联剂。
2、 在磷酸基转移中的作用 。
Glc进入血液中,唯一出路是磷酸化。G-6-P是Glc的一种活化形式。已糖激酶催化:Glc+ATP→G-6-P+ADP。
3一磷酸甘油是甘油的活化形式,能参与脂肪合成。甘油激酶:甘油+ATP→3一磷酸甘油+ADP。
(三) 磷酸肌酸、磷酸精氨酸的储能作用 P23
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起暂时储能作用的物质。
磷酸精氨酸是无脊椎动物肌肉中的储能物质
第二节 生物氧化、氧化电子传递链和氧化磷酸化作用
一、 生物氧化的概念和特点。
糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。
生物氧化是需氧细胞呼吸代谢过程中的一系列氧化还原作用,又称细胞氧化或细胞呼吸。
特点:反应条件温和,多步反应,逐步放能。
生物氧化在活细胞中进行,pH中性,反应条件温和,一系列酶和电子传递体参与氧化过程,逐步氧化,逐步释放能量,转化成ATP。
真核细胞,生物氧化多在线粒体内进行,在不含线粒体的原核细胞中,生物氧化在细胞膜上进行。
图示 :生物氧化的三阶段
第一阶段:多糖,脂,蛋白质等分解为构造单位——单糖、甘油与脂肪酸、氨基酸,该阶段几乎不释放化学能。
第二阶段:构造单位经糖酵解、脂肪酸β氧化、氨基酸氧化等各自的降解途径分解为丙酮酸、乙酰CoA等少数几种共同的中间代谢物物,这些共同的中间代谢物在不同种类物质的代谢间起着枢纽作用。该阶段释放少量的能量。
第三阶段:丙酮酸、乙酰CoA等经过三羧酸循环彻底氧化为CO2、H2O。释放大量的能量。
在第二、第三阶段中,氧化脱下的电子(H—)经过一个氧化的电子传递过程(氧化电子传递链)最终传给O2,并生成ATP,以这种方式生成ATP的作用称为氧化磷酸化作用,它是一种很重要的将生物氧化和能量生成相偶连的机制。
生物氧化的终产物是CO2和H2O,CO2的形成是通过三羧酸循环过程,H2O则是在电子传递过程的最后阶段生成。
二、 氧化电子传递过程
生物氧化过程中形成的还原型辅酶(NADH和FADH2),通过电子传递途径,使其重新氧化,此过程称为电子传递过程。
在电子传递过程中,还原型辅酶中的氢以负质子(H — )形式脱下,其电子经一系列的电子传递体(电子传递链)转移,最后转移到分子氧上,质子和离子型氧结合生成H2O。
三、 氧化电子传递链 P57 图12-2
由NADH到O2的氧化电子传递链主要包括FMN、辅酶Q(CoQ)、细胞色素b、c1、c、a,a3及一些铁硫蛋白。
氧化电子传递链位于原核生物的质膜上,真核生物中位于线粒体的内膜上。
电子载体的标准势能△G o /是逐步下降的,电子沿着电势升高的方向流动。其中有三个部位的势能落差△G较大,足以形成ATP(ADP磷酸化需要的自由能=7.3Kal/mol.)。这三个部位正好是氧化磷酸化部位。
细胞内供能物质的彻底氧化产物是CO2、H2O其中CO2主要是在三羟酸循环中产生,水是在电子传递过程的最后阶段产生。
四、 电子传递链的酶和电子载体
呼吸链中的电子载体都是和蛋白质结合存在(包括NAD+、FMN、铁硫中心、细胞色素)。这些蛋白质大都是水不溶性的,嵌在线粒体的内膜上。
NAD+是许多脱氢酶的辅酶,FMN是NADH脱氢酶的辅酶。
1、 NAD+和NADP+
脱氢酶分别与NAD+或NADP+结合,催化底物脱氢,这类酶称为与NAD(P)相关的脱氢酶,
多数脱氢酶以NAD+为辅酶,少数以NADP+为辅酶(如G-6-P脱氢酶)少数酶能以NAD+或NADP+两种辅酶(Glu脱氢酶)。
2、 NADH脱氢酶以及其它黄素蛋白酶类
NADH脱氢酶含FMN辅基,铁-硫中心。
铁硫中心铁的价态变化(Fe3+→Fe2+)可以将电子从FMN辅基上转移到呼吸链下一成员辅酶Q上。
含有核黄素辅基的酶还包括琥珀酸脱氢酶、脂酰CoA脱氢酶等。
3、 辅酶Q(泛醌)
电子传递链上唯一的非蛋白质成分。
辅酶Q在线粒体中有两种存在形式:膜结合型、游离型。
辅酶Q不仅可以接受FMN上的氢(NADH脱氢酶),还可以接受线粒体FADH2上的氢(如琥珀酸脱氢酶、脂酰CoA脱氢酶以及其它黄素酶类)。
4、 细胞色素类。
细胞色素类是含铁的电子传递体,铁原子处于卟啉的结构中心,构成血红素。
细胞色素类是呼吸链中将电子从辅酶Q传递到O2的专一酶类。
线粒体的电子传递链至少含有5种不同的细胞色素:b、c、c1、.a、a3.
细胞色素b有两种存在形式:b562、b566
细胞色素c是唯一可溶性的细胞色素,同源性很强,可作为生物系统发生关系的一个指标。
细胞色素a、a3是以复合物的形式存在,又称细胞色素氧化酶,将电子从细胞色素c传到分子O2 。
五、 电子传递抑制剂
阻断呼吸链中某一部位的电子传递。
1、 鱼藤酮、安密妥、杀粉蝶菌素
都可阻断电子由NADH向CoQ传递。
2、 抗霉素A
抑制电子从细胞色素b向细胞色素c1传递
3、 氰化物、硫化氢、叠氮化物、CO等。
阻断电子从细胞色素aa3 向O2传递
六、 氧化磷酸化作用
氧化磷酸化作用:电子沿着氧化电子传递链传递的过程中所伴随的将ADP磷酸化为ATP的作用,或者说是ATP的生成与氧化电子传递链相偶联的磷酸化作用。
底物水平磷酸化作用:是指ATP的形成直接与一个代谢中间物(如PEP)上的磷酸基团转移相偶联的作用。糖酵解中1,3-二磷酸甘油酸,磷酸烯醇丙酮酸。
1、 方程式:
NADP+H++3ADP+3Pi+1/2O2 → NAD++3H2O+3ATP
三个ATP的形成获取了呼吸链中电子由NADH传递至氧所产生的全部自由能的42%。(21.9/52.7×100%)。
2、 几个概念:
(1)、 P/O比
一对电子通过呼吸链传至氧所产生的ATP的分子数。NADH→3ATP,FADH2→2ATP
(2)、 ATP生成部位:
三个部位由三个酶复合体催化:
部位Ⅰ:NADP与CoQ之间,NADH脱氢酶。
部位Ⅱ:CoQ与CytC之间,CytC还原酶。
部位Ⅲ:Cyta与O2之间,CytC氧化酶。
(3)、 呼吸控制
ADP作为关键物质,对氧化磷酸化的调节作用称为呼吸控制。
(4)、 解偶联剂,(2.4—硝基苯酚)
电子传递过程和ATP形成过程相分离,电子传递仍可进行,但不能形成ATP。
(5)、 氧化磷酸化抑制剂:
抑制O2的利用和ATP的形成。
七、 氧化磷酸化的偶联机理
P71图12—4,跨膜质子移动示意图
(一) 化学渗透假说
第十三章 DNA的复制和修复
生物体的遗传信息储存在DNA中,并通过DNA的复制由亲代传给子代。在子代的生长发育中遗传信息自DNA转录给RNA,然后翻译成蛋白质以执行各种生命功能,使后代表现出与亲代相似的遗传性状。
1958年,F.Crick提出中心法则:
(1)以原DNA分子为模板,合成出相同DNA分子的过程。
(2)以某一段DNA分子为模板,合成出与其序列对应的RNA分子的过程。
(3)以mRNA为模板,根据三联密码规则,合成对应蛋白质的过程。
中心法则揭示了生物体内遗传信息的传递方向。
图
DNA生物合成有两种方式:DNA复制和反转录
DNA体内复制涉及:原核、真核生物的染色体、细菌质粒(环状,双链)、真核细胞器DNA(线粒体、叶绿体)、病毒(双链,环状)
DNA的体外复制:分子克隆。
第一节 DNA的复制
一、 DNA半保留复制
1953年,Watson和Crick在提出DNA双螺旋结构模型时就推测DNA可能按照半保留机制进行自我复制。
P321 图191 Watson和Crick提出的DNA双螺旋复制模型
在复制过程中,首先亲代双链解开,然后每条链作为模板,在其上合成互补的子代链,结果新形成的两个子代DNA与亲代DNA分子的碱基顺序完全一样,而且每个子代DNA分子中有一条链完全来自亲代DNA,另一条是新合成的。
1958年,Meselson和Stahl用15N标记E.coli. DNA,证明了DNA的复制是半保留复制。
P322 图19-2 DNA的半保留复制。
1963年,Cairns用放射自显影法,在显微镜下首次观察到完整的正在复制的E. coli. 染色体DNA。
P323 图 19-3
3H-脱氧胸苷标记E.coli. DNA ,经过将近两代时间,用溶菌酶消化细胞壁,将E.coli. DNA转至膜上,干燥,压感光胶片,3H放出β粒子,还原银,在光学显微镜下观察。用这种方法证明了大肠杆菌染色体DNA是一个环状分子,并以半保留的形式进行复制。
DNA的半保留复制可以说明DNA在代谢上的稳定性。经过多代复制,DNA的多核苷酸链仍可以保持完整,并存在于后代而不被分解掉。
二、 复制起点、单位和方向
DNA的复制是在起始阶段进行控制的,一旦复制起始,它就会继续下去直到整个复制子完成复制。
1、 复制起点
复制起点是以一条链为模板起始DNA合成的一段序列。有时,两条链的复制起点并不总是在同一点上(如D环复制)。
在一个完整的细胞周期中,每一个复制起点只使用一次,完成一次复制过程。
多数生物的复制起点,都是DNA呼吸作用强烈(甲醛变性实验)的区段,即经常开放的区段,富含A.T。
★环状DNA复制起点的确定方法
P325 图19-6
★复制起点的克隆和功能分析——重组质粒转化法
大肠杆菌的复制起点oriC区1Kb的重组质粒在转化子中的复制行为与其染色体一样,受到严密控制,每个细胞只有1-2个拷贝,用核酸外切酶缩短oriC克隆片段的大小,最后得到245bp的基本功能区,携带它的质粒依然能够自我复制,拷贝数可以增加到20以上,这说明发动复制的序列在245bp的基本功能区,而决定拷贝数的序列在基本功能区之外和1Kb之间。
鼠伤寒沙门氏菌的起点位于一段296bp的DNA片段上,与大肠杆菌的复制起始区有86%同源性,而且有些亲缘关系较远的细菌,其复制起点在大肠杆菌中亦能起作用。因此,复制起始区的结构可能是很保守的。
起始序列含有一系列对称的反向重复和某些短的成簇的保守序列。
2、 复制单位
复制子(Replicon):Genome能独立进行复制的单位,每个复制子都含有一个复制起点。
原核生物的染色体和质粒、真核生物的细胞器DNA都是环状双链分子,它们都是单复制子,都在一个固定的起点开始复制,复制方向大多数是双向的,少数是单向复制。多数是对称复制,少数是不对称复制(一条链复制后才进行另一条链的复制)。
环状DNA的复制眼象θ,称θ形复制。
真核生物的染色体DNA是线形双链分子,含有许多复制起点,因此是多复制子,每个复制子约有100-200Kbp。人体细胞平均每个染色体含有1000个复制子。
病毒DNA多种多样,环状或线形,双链或单链,但都是单复制子。
3、 复制方向
定点起始,复制方向大多数是双向的(等速进行或异速进行),形成两个复制叉,少数是单向复制,形成一个复制叉。
★用放射自显影实验判断DNA的复制方向及速度
低放射性3H-脱氧胸苷
高放射性3H-脱氧胸苷
a. 单向
b. 双向等速 三种结果图形
c. 双向异速
E.coli.的一个温度敏感株,在42℃时,能使DNA在完成复制后,不再开始新的复制过程,而在25℃时复制功又能能恢复。
4、 DNA的几种复制方式
(1)、 直线双向复制
单点,双向,T7
多点,双向,真核染色体DNA
(2)、 θ型复制:环状双链DNA,单向或双向(E .coli.)
(3)、 滚环复制:环状单链DNA,Φx174
(4)、 D环复制:线粒体、叶绿体DNA
(5)、 多复制叉复制:
第一轮复制尚未完成,复制起点就开始第二轮的复制。
在E.coli.富营养时,可采取多复制叉复制方式。E.coli. DNA的复制最快可达50Kb/min,完全复制需40min,富营养时,20min分裂。而真核染色体要6-8小时。
三、 与DNA复制有关的酶及蛋白质因子
目前已发现30多种酶及蛋白质因子参与DNA复制
(一) DNA的聚合反应和聚合酶
DNA生物合成5,→3,,化学合成3,→5,
1、 DNA聚合反应必备的条件
⑴ DNA聚合酶
⑵ DNA模板(反转录时用RNA模板)
⑶引物 (DNA、RNA或蛋白质)
⑷ 4种dNTP
⑸ Mg2+
2、 聚合反应过程及特点
总反应式:
n1dATP DNA pol . dAMP
n2dGTP +DNA dGMP DNA+(n1+n2+n3+n4)PPi
n3dCTP Mg2+ dCMP
n4dTTP dTMP
P329 图19-10 P330图19-11
在链的延长过程中,链的游离3,-羟基,对进入的脱氧核糖核苷三磷酸α磷原子发生亲核攻击,生成3,.5,-磷酸二酯键,并脱下焦磷酸。
DNA聚合酶的反应特点:
⑴ 以4种dNTP为底物
⑵ 反应需要接受模板的指导,不能催化游离的dNTP的聚合。
⑶ 反应需有引物3,-羟基存在
⑷ 链生长方向5, → 3,
⑸ 产物DNA的性质与模板相同
3、 由DNA聚合酶催化的几种DNA聚合类型
P331图19-12
(1) 发荚环结构:加入单链DNA作为模板和引物,3'羟基端回折成引物链。
(2) 末端延伸聚合:加入双链DNA作为模板和引物,3’末端突出作为模板。
(3) 分枝型和切口平移型聚合:加入双链DNA,聚合发生在切口或末端单链区。
(4) 环形聚合:加入带引物的环形DNA作为模板。
4、 E.coli DNA聚合酶
(1)、 E.coli. DNA pol.I(Kornberg酶,400 copy/cell)
单体酶,分子量109Kd,含一个Zn2+,每个细胞中含400个DNA pol.Ⅰ
催化活性:
5, → 3, 聚合活性
3, → 5, 外切活性
5, → 3, 外切活性
用蛋白水解酶将DNA pol.Ⅰ部分水解可得:
大片段(Klenow),75Kd,活性:5, → 3,聚合活性、3, → 5,外切活性。
小片段,36Kd,活性:5, → 3,外切活性(只作用于双链DNA的碱基配对部分,切除修复)。
Klenow片段的用途:
a 补齐DNA 3,隐缩未端
b. 标记DNA片段未端
c.cDNA合成第二链
d.d DNA测序
(2)、 E.coli. DNA Pol.Ⅱ(100 copy/cell)
单体酶,分子量120Kd
催化活性:5,→ 3,聚合(活性很低)
3,→ 5,外切
可能在DNA的修复中起某中作用。
(3)、 E.coli.DNA pol.Ⅲ(复制酶,10-20 copy/cell)
寡聚酶,全酶由10种共22个亚基组成,α、ε和θ三种亚基组成核心酶。
P334表10-3
DNA pol.Ⅲ是合成新链DNA主要的酶,又称复制酶(Replicase)
Pol.Ⅲ的5,→3,外切酶活性只作用于单链DNA。
P334 表19-2 E.coli三种DNA聚合酶的性质比较
★DNA聚合酶有6个结合位点
⑴ 模板DNA结合位点
⑵ 引物结合位点
⑶ 引物3,-OH位点、反应位点
⑷ 底物dNTP结合位点
⑸ 5, → 3, 外切位点(pol.Ⅱ没有)
⑹ 3, → 5, 外切位点(校正)
5、 真核生物DNA聚合酶
P334 表19-4 真核生物DNA聚合酶
真核DNA聚合酶一般不具备外切活力,可能由另外的酶在DNA复制中起校正功能。
⑴ DNA聚合酶α,多亚基,功能与E.coli. pol.Ⅲ类似,是真核DNA复制酶。
⑵ DNA聚合酶β,主要在DNA损伤的修复中起作用。
⑶ DNA聚合酶γ,从线粒体得到,可能与线粒体DNA的复制有关。
⑷ DNA聚合酶δ,特点:有3, → 5,外切活力
(二) 引物酶或RNA聚合酶(引发酶)
细胞内,DNA的复制需要引物(DNA或RNA),引物酶或RNA聚合酶可合成6-10个碱基的RNA引物。
★DNA复制为什么要用RNA引物?(为什么DNA聚合酶要用引物,RNA聚合酶不需要引物?)
P338
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
(三) 解螺旋酶
大肠杆菌的解螺旋酶Ⅰ、Ⅱ、Ⅲ与rep蛋白共同作用,将DNA两条链解开。
解螺旋酶I、II、III沿着模板链的5’→3’方向随着复制叉的前进而移动,而rep蛋白则在另一条模板链上沿3’→5’方向移动。
(四) DNA旋转酶
属DNA拓扑异构酶Ⅱ,可引入负超螺旋,消除复制叉前进时带来的扭曲张力。
拓扑异构酶分两类:I和II,广泛存在于原核生物和真核生物。
拓扑异构酶I使DNA的一条链发生断裂和再连接,反应无须供给能量,主要集中在活性转录区,与转录有关。
拓扑异构酶Ⅱ使DNA的两条链同时断裂和再连接,当它引入超螺旋时需要由ATP供给能量。分布在染色质骨架蛋白和核基质部,与复制有关。
(五) 单链DNA结合蛋白(SSB)
复制叉上的解螺旋酶,沿双链DNA前进,产生单链区,大量的单链DNA结合蛋白与单链区结合,阻止复性和保护单链DNA不被核酸酶降解。
(六) DNA连接酶(ligase)
连接双链DNA上的切口。
大肠杆菌连接酶只能在模板上连接DNA缺口。T4DNA ligase即可连接粘性末端的DNA,又可连接平齐末端的双链DNA。
E.coli.和其它细菌的DNA ligase以NAD为能源,动物细胞和噬菌体DNA ligase以ATP为能源。
(七) DNA复制的拓扑结构
P338-339
四、 DNA的半不连续复制
P336 图19-15 DNA的半不连续复制
DNA聚合酶催化的方向是5,→3,。
前导链:
滞后链:
1968年,发现冈崎片段。长度:
细菌:1Kb-2Kb,相当于一个顺反子的大小。
真核:100-200bp,约等于一个核小体DNA的长度。
五、 DNA复制过程(E.coli.)
P342 图19-17 大肠杆菌的复制体结构示意图
1、 复制的起始
引发:当DNA的双螺旋解开后,合成RNA引物的过程。
引发体:引物合成酶与各种蛋白质因子(dnaB、dnaC、n、n'n''I)构成的复合体,负责RNA引物的合成。
引发体沿着模板链5’→3’方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动的方向相同),移到一定位置上即可引发RNA引物的合成。
E.coli.DNA复制原点ori C,由245bp组成,三组13bp重复序列(近5,端处),四组9 bp重复序列(另一端处)。
图
大肠杆菌复制原点起始复制所需蛋白质:
DNaA 在原点处打开双螺旋
DNaB 使DNA解旋
DNaC DNaB结合在原点所需
Hu 刺激起始
引物酶(DNaG) 合成RNA引物
SSB 结合单链DNA
RNA聚合酶 促进DNaA活性
旋转酶 松驰DNA扭曲应力
20个DnaA结合在四组9bp重复区,形成起始复合物,DNA环绕此复合物。
三组13bp重复区依次变性,产生开放型复合物。
DnaB(在DnaC协助下)与开放复合物结合,进一步解链。
2、 DNA链的延长反应
前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反应由DNA pol.Ⅲ催化。
复制体:在DNA合成的生长点(既复制叉上)分布着许多与复制有关的酶和辅助因子,它们在DNA的模板链形成离散的复合物,彼此配合进行高度精确的复制,称为复制体。
复制体沿着复制叉方向前进就合成DNA。
3、 RNA引物的切除及缺口补齐
DNA polⅠ的5, → 3,外切活力,切除RNA引物。
DNApolⅠ的5, → 3,合成活性补齐缺口。
4、 DNA切口的连接
DNA ligase,动物、真核由ATP供能,原核由NAD供能。
5、 DNA合成的终止
环状DNA、线性DNA,复制叉相遇即终止。
u 小结:
⑴ DNA解螺旋酶解开双链DNA。
⑵ SSB结合于DNA单链。
⑶ DNA旋转酶引入负超螺旋,消除复制叉前进时带来的扭曲张力。
⑷ DNA引物酶(在引发体中)合成RNA引物。
⑸ DNA pol.Ⅲ在两条新生链上合成DNA。
⑹ DNA polⅠ切除RNA引物,并补上DNA。
⑺ DNA ligase连接一个冈崎片段。
DNA复制过程中,聚合酶对dTTP和dUTP的分辨能力高,有少量dUTP掺入DNA链中,此时,U-糖苷酶、AP内切酶、DNA polⅠ、DNA ligase共同作用,切除尿嘧啶,接上正确的碱基。
六、 真核生物DNA的复制 P343
1、 复制起点和单位
真核生物染色体DNA是多复制子,有多个复制起点,可以多点起始,分段进行复制。每个复制子大多在100-200bp之间,比细菌染色体DNA(单复制子)小得多。
★试验证据:5-氟脱氧胞苷标记
真核生物DNA复制叉移动的速度此原核的慢,如哺乳动物复制叉移动的速度每分钟1-3Kb,细菌每分钟5Kb。
真核生物染色体全部复制完成前,起点不再从新开始复制。而在快速生长的原核生物中,起点可以连续发动复制。真核生物在快速生长时,可采用更多的复制起点同时复制。如黑腹果蝇,早期胚胎细胞中相邻复制起点的平均距离为7.9kb,而在培养的成体细胞中,平均距离为40kb,成体细胞只利用一部分复制起点。
2、 复制过程中组蛋白的装配
核小体的结构(200bp左右)
在真核生物的复制子上,亲代染色体的核小体被逐个打开,组蛋白以完整的八聚体形式直接转移到子代DNA的前导链上,新合成的组蛋白与后随链组装成核小体。因此,DNA的复制是半保留的,而组蛋白则是全保留的。
★试验证据:环己酮亚胺抑制组蛋白合成,电子显微镜下观察
3、 真核生物DNA复制的终止
端粒:一段DNA序列与蛋白质形成的一种复合体,是真核细胞染色体末端所特有的结构。
功能:
⑴保证线性DNA的完整复制
⑵保护染色体末端
⑶决定细胞寿命,胚系细胞含端粒酶,体细胞不表达端粒酶。
端粒(telomeres)分布于线性真核染色体未端。酵母端粒约100bp的重复序列,形式为:5,(TxGy)n3,(AxCy) n,x和y一般为1—4。
端粒末端的重复序列,通过端粒酶(telomerase)将其加到染色体末端。
端粒酶含有RNA和蛋白质(起DNA聚合酶的作用)两种组分,RNA分子约159b,含有多个CyAx重复序列,RNA分子用作端粒TxGy链合成的模板。端粒酶是一种反转录酶,它只合成与酶自身的RNA模板互补的DNA片段。
人类体细胞的端粒长度,随个体年龄增加而逐渐缩短。细胞每分裂一次,端粒缩短50-200bp,短至1-4Kbp时,细胞就停止分裂。若能重建端粒,则细胞可以永远分裂。恶性肿瘤细胞端酶表达多。
⑴杂交
图
⑵聚合
图
⑶转位再杂交
图
⑷进一步聚合
图
⑸非标准GG配对
图
七、 DNA复制的调控
八、 DNA复制的真实性
《杨岐生》P144
生物体DNA复制具有高度真实性,复制107-1011碱基对,只有一个错误碱基。
碱基对的自由能通常在4-13KJ/mol,这样的自由能相当于平均参入100个核苷酸就可能出现一次错配,仅靠Watson-Crick双螺旋的碱基配对原则,突变率将高达10-2 。
1、 DNA聚合酶对碱基的选择作用
酶的被动论:不同的核苷酸在聚合位点停留时间不同,正确的dNTP能长时间停留,而参与聚合。DNA聚合酶能依照模板的核苷酸,选择正确的dNTP掺入引物末端。
酶积极参与理论:DNA聚合酶对正确与错误的核苷酸,不仅亲和性不同,而且将它们插入DNA引物端的速度也不同。
动力学校正阅读:在新的磷酸二酯键未形成时,dNTP结合在酶与模板—引物复合物的聚合位点上,DNA聚合酶能识别正确与错误的dNTP。
DNA聚合酶对底物的识别作用,DNA聚合酶有两种底物,一种是DNA模板—引物,另一种是dNTP。
DNA聚合酶先识别DNA模板和引物的3,未端,再识别底物dNTP,是一种有序的识别过程。
2、 3,→5,外切活性的校正阅读
E. coli. DNA pol.Ⅰ和pol.Ⅲ有3,→5,外切活性,可删除错误插入的核苷酸。
缺失3, →5,外切活性的E. coli. DNA pol.Ⅰ,催化DNA合成时,出现错误的几率增高5-50倍。因此,3,→5,外切活性可以使DNA复制的真实性,提高1-2个数量级。
图
3、 影响DNA合成真实性的因素
⑴高浓度NMP(如3,-AMP, 5,-GMP)
NMP竞争酶的dNTP结合位点,抑制3,→5,外切活性。
⑵某一种dNTP浓度银高,可使引物3,末端离开外切活性中心。
⑶dNTP 一般与二价阳离子结合成活化形式,Mg2+为主要的二价阳离子。当用其它二价阳离子(如Mn2+)代替Mg2+时,会改变酶的主体结构,影响聚合活性和3,→3,外切活性。
4、 为什么用RNA引物
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
第二节 DNA的损伤及修复
DNA的损伤,《罗纪盛》P428
一些物理化学因子如紫外线、电离辐射和化学诱变剂均可引起DNA损伤,破坏其结构与功能。然而在一定条件下,生物机体能使这种损伤得到修复。
紫外线可使DNA分子中同一条链上两个相邻的胸腺嘧啶碱基之间形成二聚体(TT),两个T以共价键形成环丁烷结构。CT、CC间也可形成少量二聚体(CT、CC),使复制、转录受阻。
P346图19-22
细胞内具有一系列起修复作用的酶系统,可以除去DNA上的损伤,恢复DNA的双螺旋结构。目前已知有4种酶修复系统:光复活、切除修复、重组修复、SOS反应诱导的修复,后三种不需要光,又称为暗修复。
一、 直接修复
1949年已发现光复活现象,可见光(最有效400nm)可激活光复活酶,此酶能分解由于紫外线形成的嘧啶二聚体。高等哺乳动物没有此酶。
P347 图19-23 紫外线损伤的光复活过程
A 形成嘧啶二聚体 B. 光复合酶结合于损伤部位 C 酶被可见光激活 D. 修复后释放酶
二、 切除修复
P348 图19-24 DNA损伤的切除修复过程
在一系列酶的作用下,将DNA分子中受损伤部分切除,并以完整的那一条链为模板,合成出切去部分,DNA恢复正常结构。
I、结构缺陷的修复:
(1)核酸内切酶识别DNA损伤部位,在其附近将其切开。
(2)核酸外切酶切除损伤的DNA。
(3)DNA聚合酶修复。
(4)DNA连接酶连接。
图
II、无嘌呤无嘧啶——碱基缺陷或错配——脱碱基(N-糖苷酶):
甲基磺酸甲酯可使鸟嘌呤第7位氮原子烷基化,活化β—糖苷键,造成脱嘌呤作用;酸也能使DNA脱嘌呤。
DNA复制时,DNA聚合酶对dTTP和dUTP分辨力不高,有少量dUTP掺入DNA链。细胞中的尿嘧啶-N-糖苷酶可以切掉尿嘧啶。腺嘌呤脱氨形成次黄嘌呤时也可以被次黄嘌呤-N-糖苷酶切掉次黄嘌呤。
对于无嘌呤无嘧啶的损伤有两种修复方法:
(1) AP核酸内切酶切开,核酸外切酶切除,DNA聚合酶修复,DNA连接酶连接。
(2) 插入酶插入正确碱基三、 重组修复
P349图19—25重组修复的过程
切除修复发生在DNA复制之前,而当DNA发动复制时尚未修复的损伤部位,可以先复制,再重组修复。
在重组修复过程中,DNA链的损伤并未除去。
重组修复至少需要4种酶组分。
重组基因recA编码一种分子量为40000的蛋白质,它具有交换DNA链的活力。RecA蛋白被认为在DNA重组和重组修复中均起关键作用。
recB、recC基因分别编码核酸外切酶V的两个亚基。
此外,修复合成还需要DNA聚合酶和连接酶。
四、 易错修复和应急反应(SOS反应)
诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。
SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和倾向差错的修复。
避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。
倾向差错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于倾向差错的修复。
SOS反应是由RecA蛋白和LexA阻遏物相互作用引起的。RecA蛋白不仅在同源重组中起重要作用,而且它也是SOS反应的最初发动因子。在有单链DNA和ATP存在时,RecA蛋白被激活而表现出蛋白水解酶的活力,它能分解λ噬菌体的阻遏蛋白和LexA蛋白。LexA蛋白(22Kd)许多基因的阻遏物,当它被RecA的蛋白水解酶分解后就可以使一系列基因得到表达其中包括紫外线损伤的修复基因uvrA、uvrB、uvrC(分别编码核酸内切酶的亚基)以及recA和lexA基因本身,还有单链结合蛋白基因ssb,与λ噬菌体DNA整合有关的基因himA、与诱变作用有关的基因umuDC,与细胞分裂有关的基因sulA,ruv,和lon,以及一些功能不清楚的基因dinA,B,D,F等。
SOS反应广泛存在于原核生物和真核生物,它是生物在极为不利的环境中求得生存的一种基本功能。
然而癌变有可能也是通过SOS反应造成的,因为能引起SOS反应的作用剂通常都具有致癌作用,如X-射线,紫外线,烷化剂,黄曲霉素等,而某些不能致癌的诱变剂并不引起SOS反应,如5-溴尿嘧啶。目前,有关致癌物的一些简便检测方法就是根据SOS反应原理而设计的,既测定细菌的SOS反应。
第三节 RNA指导的DNA合成(反转录)
反转录(reverse transcription):以RNA为模板,合成DNA。与通常转录过程中遗传信息流从DNA到RNA的方向相反。
1970年,Temin 和Baltimore分别从致癌RNA病毒(劳氏肉瘤病毒和鼠白血病病毒)中发现发反转录酶。
致癌RNA病毒是一大类能引起鸟类、哺乳类等动物白血病、肉瘤以及其它肿瘤的病毒。这类病毒侵染细胞后并不引起细胞死亡,却可以使细胞发生恶性转化。经过改造后可以作为基因治疗的载体。
放线菌素D(抑制以DNA为模板的反应,复制和转录)能抑制致癌RNA病毒的复制,可见致癌RNA病毒的复制过程必然涉及DNA。
Bader 用嘌呤霉素(puromycin)来抑制静止细胞蛋白质的合成,发现这种细胞仍能感染劳氏肉瘤病毒(RSV),证实反转录酶是由反转录病毒带入细胞的,而不是感染后在宿主细胞中新合成的。
一、 反转录酶
由一个α亚基和一个β亚基组成,含有Zn2+,具有三种酶活力。
(1)RNA指导的DNA聚合酶活力(以RNA为模板,合成一条互补的DNA,形成RNA—DNA杂种分子)。
(2)RNase H酶活力,水解RNA—DNA杂种分子中的RNA,可沿3’→5’和5’→3’两个方向起外切酶作用。
(3)DNA指导的DNA聚合酶活力。
模板:RNA或DNA
以自身病毒类型的RNA为模板时,该酶的反转录活力最大,但是带有适当引物的任何种类的RNA都能作为合成DNA的模板。
引物:RNA或DNA
底物:dNTP
二价阳离子:Mg2+或Mn2+
真核mRNA3’端有polyA,加入oligo dT后,可以作为反转录酶的模板,合成cDNA。
二、 病毒RNA的反转录过程
所有已知的致癌RNA病毒都含有反转录酶,因此被称为反转录病毒(retrovirus),反转录病毒的复制需要经过一个DNA中间体(前病毒)。
1、 反转录病毒的基因组结构
P353 图19-27
(1) 反转录病毒基因组通常由两条相同的(+)RNA链组成。5’端附近区域以氢键结合在一起,全长7-10Kb。
(2) 每一条RNA链的两端具有相同的序列,形成正向重复序列。
(3) 5’端有帽子结构,3’端有polyA,与真核mRNA相似。
(4) 5’端带有1分子的宿主tRNA,作为反转录时的引物。某些鸟类反转录病毒携带的是tRNAtrp,鼠类是tRNApro
2、 反转录过程。
当致癌RNA病毒侵染宿主细胞时,病毒RNA及反转录酶一起进入宿主细胞,病毒自身带入的反转录酶使RNA反转录成双链DNA。
(1) 以病毒(+)RNA为模板,合成互补的(-)DNA。
(2) 切除RNA—DNA杂种分子中的RNA。
(3) 以(-)DNA链为模板,合成(+)DNA链,最后形成两端带有LTR(长末端重复序列)的双链DNA。
反转录病毒只有整合到宿主染色体DNA后才能被转录,转录产物经拼接可以产生不同的病毒mRNA。LTR(长末端重复序列)对前病毒DNA整合到宿主染色体DNA以及整合后的转录均起着重要作用。
反转录病毒合成的过程:
图
缺口的模板(基因组)RNA,在U3旁生成一个正链DNA的合成RNA的引物,而其余的模板RNA被降解。
正链DNA合成开始,复制。
图
3、 反转录病毒的生活周期
P354 图19-29
(1) 病毒粒子侵染细胞,病毒RNA和反转录酶一起进入细胞。
(2) RNA被反转录成双链DNA(前病毒),环化,进入细胞核。
(3) 反转录病毒的DNA整合到宿主染色体DNA中。
(4) 前病毒DNA进行复制,转录出功能基因、基因组RNA和病毒蛋白。
(5) 基因组RNA和病毒蛋白在胞质中组装成新病毒粒子,转移到质膜,通过出芽方式释放新病毒粒子。
三、 反转录的生物学意义。
1.反转录酶存在于所有致癌RNA病毒中,它的存在与RNA病毒引起细胞恶性转化有关。
2.艾滋病毒(AIDS)
人类免疫缺陷病毒(HIV),也是一种反转录病毒,主要感染T4淋巴细胞和B淋巴细胞。病毒粒子直径100nm,球状,粒子外包被两层脂质质膜,膜上有糖蛋白(gp120、gp41),另有两层衣壳蛋白p24、p18。
HIV基因组由两条单链正链RNA组成,每个链长9.7kb,RNA 5,端有帽子结构,3’端有PolyA,链上结合有反转录酶。
3.乙肝病毒
大蛋白、中蛋白、主蛋白(表面抗原)
核心抗原
双链环状DNA
乙肝病毒与反转录病毒的区别:
P355
4、真核生物正常细胞内也存在反转录过程
真核生物的谈色体基因组中存在为数众多的逆假基因和逆基因。
逆假基因:无启动子和内含子,但有polyA的残基,推测是由mRNA反转录后整合到基因组中去的。
逆基因:具有启动子和转录功能,无内含子。可能是由于mRNA反转录后刚好整合到启动子的下游处,或者是带启动子的RNA序列反转录后整合到基因组中
第四节 DNA合成技术
一、 cDNA合成
1、 cDNA文库的构建
cDNA:以mRNA为模板,用反转录酶合成第一链,去除mRNA,合成的第二链。
cDNA文库是获得真核结构基因的最好方法,成熟的mRNA无内含子。
(1)、 真核mRNA的分离纯化
特点:含量少,不均一,表达具有发育阶段性和组织特异性。
总RNA: rRNA 80~85%
mRNA 1~5%
tRNA及其它小分子RNA 10~15%
不均一:在1~5%的mRNA中,有10000—30000种mRNA。
分离、纯化:
用Oligo dT纤维素柱(亲和层析法),加入总RNA,高盐洗脱,先流出非mRNA,降低盐浓度,加入Oligo dA竞争,可洗出mRNA 混合物。
免疫法可分离特定的mRNA。
(2)、 cDNA合成(反转录酶)
A. 自身引物法(S1核酸酶降解法)
图
Oligo(dT)15-18个核苷酸
mRNA5’端序列有丢失。
B. 取代合成法(较常用)
图
Oliyo(dT)与mRNA3’端AAA杂交作为引物,合成第一条DNA链。
RNaseH在mRNA上产生多个切口。
DNA pol.Ⅰ切口平移,DNA ligase连接,合成出第二条DNA链。
T4DNA pol.切去端头的RNA-DNA杂交链。
C. 引物合成法
可以合成全长cDNA,mRNA的5’端不丢失。
图
(3)、 cDNA与载体连接
(4)、 重组体的转化
(5)、 扩增、保存
2、 获取特定mRNA的cDNA
(1)免疫法分离特定的mRNA
(2)PCR法
二、 PCR技术(聚合酶链式反应)
Polymerase chain Reaction
以目的基因或DNA片段为模板,在引物介导及Taq DNA聚合酶催化下,在体外用核苷酸大量合成目的基因或DNA片段。
它能快速、专一地扩增所希望得到的目的基因或DNA片段。
1、 反应物
(1)模板
单、双链DNA或cDNA都可以作为PCR的模板,若以RNA为起始材料,则须经反转录,获得第一条cDNA后才能用于PCR。
(2)Taq DNA聚合酶
DNA聚合酶是进行PCR扩增的关键,从水生栖热菌(Thermus aquaticns VT-1)分离出来。
Taq DNA聚合酶有很好的热稳定性,92.5℃处理130min,仍保留50%的酶活性,在74℃活性最高,错误掺入核苷酸的比率为1/7500。
(3)引物
引物是决定PCR结果的关键,它由寡核苷酸组成,15-30个b
(4)核苷酸dNTP
dNTP的浓度50-200umul/L。
(5)镁离子Mg2+
2、 PCR原理
图
变性 95℃
复性 55℃
延伸 72℃
第十四章 RNA的生物合成
RNA的生物合成包括转录和RNA的复制。
转录(transcription):以一段DNA的遗传信息为模板,在RNA聚合酶作用下,合成出对应的RNA的过程,或在DNA指导下合成RNA。
转录产物:mRNA 、rRNA、 tRNA、小RNA
除某些病毒基因组RNA外,绝大多数RNA分子都来自DNA转录的产物。
转录研究的主要问题
①RNA聚合酶 ②转录过程 ③转录后加工 ④转录的调控
①~③是基本内容,④是目前研究的焦点,转录调控是基因调控的核心。
转录与DNA复制的异同:
相同:要有模板,新链延伸方向5’→3’,碱基的加入严格遵循碱基配对原则。
相异:①复制需要引物,转录不需引物。
②转录时,模板DNA的信息全保留,复制时模板信息是半保留。
③转录时,RNA聚合酶只有5’→3’聚合作用,无5’→3’及3’→5’外切活性。
转录是基因表达的第一步,也是最关键的一步。
基因表达的终产物:①RNA ②蛋白质
转录过程涉及两个方面
①RNA合成的酶学过程
②RNA合成的起始信号和终止信号,即DNA分子上的特定序列。
DNA正链:与mRNA序列相同的DNA链。
负链:与正链互补的DNA链。
转录单位的起点核苷酸为+1,起点右边为下游(转录区),转录起点左侧为上游,用负数表示:-1,-2,-3。
第一节 DNA指导的RNA合成(转录)
RNA链的转录,起始于DNA模板的一个特定位点,并在另一位点终止,此转录区域称为一个转录单位。一个转录单位可以是一个基因(真核),也可以是多个基因(原核)。
基因的转录是有选择性的,细胞不同生长发育阶段和细胞环境条件的改变,将转录不同的基因。
转录的起始由DNA上的启动子区控制,转录的终止由DNA上的终止子控制,转录是通过DNA指导的RNA聚合酶来实现的。
一、 RNA聚合酶
RNA合成的基本特征
①底物:NTP(ATP、GTP、CTP、UTP)
②RNA链生长方向:5’→3’
③不需引物
④需DNA模板
反应:
1、 E.coli RNA聚合酶(原核)
E.coli和其它原核细胞一样,只有一种RNA聚合酶,合成各种RNA(mRNA、tRNA、rRNA)。
一个E.coli细胞中约有7000个RNA聚合酶分子,在任一时刻,大部分聚合酶(5000左右)正在参与RNA的合成,具体数量依生长条件而定。
E.coli RNA聚合酶全酶|(holoenzyme)分子量46万Da,由六个亚基组成,α2ββ’ σω,另有两个Zn2+。
无σ亚基的酶叫核心酶,核心酶只能使已开始合成的RNA链延长,而不具备起始合成活性,加入σ亚基后,全酶才具有起始合成RNA的能力,因此,σ亚基称为起始因子。
E.coli RNA聚合酶各亚基的大小与功能:
亚基 亚基数 分子量(KD) 基因 功能
β’ 1 160 rpoC 与模板DNA结合
β 1 150 rpoB 与核苷酸结合,起始和催化部位。
σ 1 70 rpoD 起始识别因子
α 2 37 rpoA 与DNA上启动子结合
ω 1 9 ---- 不详
不同的细菌,β’、β、α亚基分子量变化不大,σ亚基分子量变化较大,44KD~92KD。
σ亚基的功能:核心酶在DNA上滑动,σ亚基能增加酶与DNA启动子的结合常数,增加停留时间,使聚合酶迅速找到启动子并与之结合,σ亚基本身无催化活性。
不同的σ因子识别不同的启动子,从而表达不同的基因。
不同的原核生物,都具有相同的核心酶,但σ亚基有所差别,这决定了原核基因表达的选择性。
RNA聚合酶的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。
P360 图20-1RNA聚合酶的活性中心
核心酶覆盖60bp的DNA区域,其中解链部分17bp左右,RNA-DNA杂合链约12bp。
纯的RNA聚合酶,在离体条件下可转录双链DNA,但在体内,DNA的两条链中只有一条可用于转录,这可能是由于RNA聚合酶在分离时丢失了σ亚基引起的。
解旋和重新螺旋化也是RNA聚合酶的内在特性,在酶的前端解螺旋,在后端以相反方向重新螺旋化,活体状况中,可能还有其它酶活性来帮助调整DNA的拓扑学性质。
37℃时,RNA聚合酶的聚合速度可达40~100个核苷酸/秒
2、 真核生物RNA聚合酶
真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。这三种RNA聚合酶分子量都在50万左右,亚基数分别为6-15。
P362 表20-3 真核生物RNA聚合酶的分类、分布及各自的功能
动物、植物、昆虫等不同来源的细胞,RNApolⅡ的活性都可被低浓度的α-鹅膏蕈碱抑制,而RNApolⅠ不受抑制。
动物RNApolⅢ受高浓度的α-鹅膏蕈碱抑制,而酵母、昆虫的RNApolⅢ不受抑制。
除了细胞核RNA聚合酶外,还分离到线粒体和叶绿体RNA聚合酶,它们的结构简单,能转录所有种类的RNA,类似于细菌RNA聚合酶。
3、 噬菌体T3和T7编码的RNA聚合酶
仅为一条分子量11KD的多肽链,这些聚合酶只需要识别噬菌体DNA的少数启动子,并无选择地与其作用,37℃时的聚合速度200nt/秒。
二、 RNA聚合酶催化的转录过程(E.coli)
P361 图20-2
1、 起始
RNA聚合酶结合到DNA双链的特定部位,局部解开双螺旋,第一个核苷酸掺入转录起始位点,从此开始RNA链的延伸。
在新合成的RNA链的5’末端,通常为带有三个磷酸基团的鸟苷或腺苷(pppG或pppA),即合成的第一个底物是GTP或ATP。
起始过程中,σ因子起关键作用,它能使聚合酶迅速地与DNA的启动子结合,σ亚基与β’结合时,β’亚基的构象有利于核心酶与启动子紧密结合,。
正链:与mRNA序列相同的两、链。
负链:模板链。
转录起点是+1,上游是-1。
2、 延长
转录起始后,σ亚基释放,离开核心酶,使核心酶的β’亚基构象变化,与DNA模板亲和力下降,在DNA上移动速度加快,使RNA链不断延长。
转录起始后,σ亚基便从全酶中解离出来,然后nusA亚基结合到核心酶上,由nusA亚基识别序列序列。
3、 终止
RNA聚合酶到达转录终止点时,在终止辅助因子的帮助下,聚合反应停止,RNA链和聚合酶脱离DNA模板链,nusA又被σ亚基所取代。。
由此形成RNA聚合酶起始复合物与终止复合物两种形式的循环
三、 启动子和转录因子
启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列。
转录因子:RNA聚合酶在进行转录时,常需要一些辅助因子(蛋白质)参与作用,此类蛋白质统称为转录因子。
足迹法和DNA测序法确定启动子的序列结构。
P363
(一) 原核启动子结构与功能
分析比较上百种启动子序列,发现不同的启动子都存在保守的共同序列,包括RNA聚合酶识别位点和结合位点。
(1)、 -10序列(Pribnow框)
在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。
频度: T89 A89 T50 A65 A65 T100
据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。
目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。
RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。
(2)、 -35序列(Sexfama box)(识别区域)
只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。
各碱基出现频率如下:T85 T83 G81 A61 C69 A52 ,其中TTG十分保守。
-35序列的功能:它是原核RNA聚合酶全酶依靠σ因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。
-35序列提供RNA聚合酶识别信号,
-10序列有助于DNA局部双链解开,
启动子结构的不对称性决定了转录的方向。
P364 图20-4 原核型启动子的结构
(二) 真核启动子
真核基因的转录十分复杂,对启动子的分析要比原核基因的困难得多。
真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA,这三类聚合酶的启动子各有其结构特点。
1、 RNA聚合酶Ⅱ的启动子
RNA聚合酶Ⅱ的启动子有三个保守区:
(1)、 TATA框(Hogness框)
中心在-25至-30,长度7bp左右。
碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。
此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。
TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。
由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。
(2)、 CAAT框
中心在-75处,9bp,共有序列GGT(G)CAATCT
功能:与RNA聚合酶结合。
(3)、 GC框
在CAAT框上游,序列GGGCGG,与某些转录因子结合。
CAAT和GC框均为上游序列,对转录的起始频率有较大影响。
2、 RNApolⅢ的启动子
RNApolⅢ的启动子在转录区内部。
P365图20-5 由RNA聚合酶III转录的三个基因的启动子
四、 终止子和终止因子
终止子:提供转录终止信号的一段DNA序列。
终止因子:协助RNA聚合酶识别终止子的蛋白质辅助因子。
有些终止子的作用可被特异的因子所阻止,使酶越过终止子继续转录,称为通读,这类引起抗终止作用的蛋白质称为抗终止因子。
终止子位于已转录的序列中,DNA的终止子可被RNA聚合酶本身或其辅助因子识别。
P366图20-6
1、 大肠杆菌中的两类终止子
P366图20-6
所有原核生物的终止子在终止点之前都有一个回文结构,它转录出来的RNA可以形成一个颈环式的发荚结构。
(1)、 不依赖于ρ的终止子(简单终止子)
简单终止子除具有发夹结构外,在终止点前有一寡聚U序列,回文对称区通常有一段富含GC的序列。
寡聚U序列可能提供信号使RNA聚合酶脱离模板。
(2)、 依赖ρ的终止子
依赖ρ的终止子,必需在ρ因子存在时,才发生终止作用。终止点前无寡聚U序列,回文对称区不富含GC。
ρ因子是55KD的蛋白质,可水解三磷酸核苷。
2、 抗终止作用
通读往往发生在强启动子、弱终止子的基因上。
抗终止作用常见于某些噬菌体的时序控制。早期基因于后基因之间以终止子相隔开,通过抗终止作用可以打开后基因的表达。
λ噬菌体前早期(immediate early)基因的产物N蛋白就是一种抗终止因子。它与RNA聚合酶作用使其在左右两个终止子处发生通读,从而表达晚早期(delayed early)基因。晚早期基因的产物Q蛋白也是一种抗终止因子,它能使晚早期基因得以表达。
五、 转录过程的调节控制
参阅P367转录过程的调节控制、P450基因表达的调节
基因的表达是受到严格的调节控制的,转录水平的调控是关键的环节,转录调控主要发生在起始和终止阶段。
时序调控:生长、发育、分化、时间程序。
适应调控:细胞内外环境改变。可位于基因的上游或下游区或内含子中。
操纵子:原核生物基因表达的协调单位,包括结构基因、调节基因及由调节基因产物所识别的控制序列(启动子、操纵基因)。
增强子:真核生物、病毒的基因组内,对转录起增强作用的一段DNA序列。它具有长距离效应,与方向无关,只作用于同一条DNA链上的启动子。
转录水平的调控取决于调节因子(RNA或蛋白质)与启动子、增强子、终止子之间的相互作用。
(一) 原核生物的转录调控
1、 操纵子模型
调节基因的产物可以是负调节物(如阻遏蛋白),也可以是正调节物,它们与操纵基因作用,关闭或打开结构基因的表达
2、 cAMP能促进许多原核生物的基因表达
cAMP可以活化环腺苷酸受体蛋白(cAMP receptor protein,CRP),CRP作为一种广谱性的正调节物,结合于被调控的启动子上,促进RNA聚合酶与启动子的结合,从而促进转录的进行。
葡萄糖效应:培养基中葡萄糖含量较高时,细菌首先利用葡萄糖,阻遏利用其它底物的酶类的合成。
原因:葡萄糖的降解物可以抑制腺苷酸环化酶的活力,并激活磷酸脂酶,因而降低cAMP的水平,使这些酶的基因不能转录。
因此,CRP又称降解物基因活化蛋白(catabolite gene activator protein,CAP)。受cAMP-CRP调节的操纵子(既代谢降解物敏感的操纵子)包括许多负责糖类分解代谢的诱导性启动子,如乳糖操纵子,半乳糖操纵子。,阿拉伯糖操纵子等,以及负责氨基酸合成代谢的可阻遏的操纵子,如Ile-Val操纵子(iLV)。
调节子:受一种一种调节蛋白所控制的几个操纵子系统,这些操纵子通常都属于同一个代谢途径或与同一种功能有关。
综合性调节子:一种调节蛋白控制几个不同代谢途径的操纵子,如cAMP-CRP对各种分解代谢和合成代谢的调控系统。
3、 衰减子的调控作用
(二) 真核生物的转录调控
第二节 RNA转录后的加工
RNA聚合酶合成的原初转录产物,要经过剪切、修饰、拼接等过程,才能转变成成熟的RNA分子,此过程称RNA转录后的加工。
(1)、 原核、真核的tRNA、rRNA(稳定的RNA)
细胞内的tRNA、rRNA相对稳定,半衰期一般为几个小时。所有的tRNA、rRNA都不是原初转录产物,都要经过一系列的加工才能成为有活性的分子。
a. 原初转录产物的5’是三磷酸(pppG、pppA),而成熟的tRNA、rRNA ,5’是单磷酸。
b. 成熟 tRNA、rRNA分子都比原初转录物小。
c. 所有的tRNA分子,都有原初转录物所没有的稀有碱基(A、G、C、U以外的碱基)。
(2)、 真核的mRNA
单顺反子,多内含子。寿命比原核mRNA的长。
内含子、内元(intron):在原初转录物中,通过RNA拼接反应而被去除的RNA序列,或基因中与这种序列对应的DNA序列。
外显子、外元(exon):原初转录物通过RNA拼接反应后,而保留于成熟RNA中的序列,或基因中与成熟RNA对应的DNA序列。
(3)、 原核mRNA
多顺反子,半衰期只有几分钟。这是原核生物重要的调控机制,如果一种酶或蛋白质不再需要时,只需简单地关闭其mRNA的合成就行了。
一、 原核生物RNA的加工
在原核生物中,rRNA基因与某些tRNA基因组成混合操纵子,可提高效率、节省空间(增加有效信息)。其它的tRNA基因也成簇存在,并与编码蛋白质的基因组成操纵子,它们在形式多顺反子转录物后,断裂成为rRNA和tRNA的前体,然后进一步加工成熟。
1、 原核rRNA前体的加工(E.coli)
P 370图20-7 E.coli rRNA前体的加工
E.coli共有三种rRNA
5S rRNA 120b
16S rRNA 1541b
23S rRNA 2904b
rRNA原初转录物含6300个核苷酸,约30S。
大肠杆菌有7个rRNA的转录单位(操纵子),它们分散在基因组的各处。每个转录单位由16SrRNA、23SrRNA、5SrRNSA以及一个或几个tRNA基因所组成。每个操纵子中tRNA基因的种类、数量和位置都各不相同。
RNAaseⅢ是一种rRNA、多顺反子mRNA加工的内切酶,识别特定的RNA双螺旋区。
RNAase E也可识别P5(5SrRNA前体)两端形成的双螺旋区。
2、 原核tRNA前体的加工
P371图20-8
E.coli染色体基因组有60个tRNA基因,即某种a.a.的tRNA基因不止一个拷贝。
tRNA基因大多成簇存在,或与rRNA基因,或与蛋白质基因组成混合转录单位。
tRNA前体加工步骤
a. 核酸内切酶(RNAaseP、RNAaseF)在tRNA两端切断。
b. 核酸外切酶(RNAaseD)从3’端逐个切去附加序列。
c. 在tRNA3’端加上-CCA-OH。tRNA核苷酰转移酶
d. 核苷的修饰(修饰酶):甲基化酶 / S-腺苷蛋氨酸(SAM),假尿苷合成酶。
(1)、 RNAase P
能识别空间结构,很干净地切除tRNA前体的5’端。
含有蛋白质和RNA(M1 RNA)两部分。M1 RNA含375nt,在某些条件下,(提高[Mg2+]、或加入胺类),RNAase P的RNA能单独地切断tRNA前体的5’端序列。
(2)、 RNAaseF
不干净地切除tRNA前体的3’端序列,需要RNAase D进一步修剪。
3、 原核mRNA前体的加工
由单顺反子构成mRNA,一般不需加工,一经转录,即可直接进行翻译。有些多顺反子构成的mRNA,须由核酸内切酶切成较小的mRNA,然后再进行翻译。
一、 化学反应中的自由能变化及其意义
1、 化学反应中的自由能
自由能:在一个体系中,能够用来做有用功的那一部分能量称自由能,用符号G表示。
在恒温、恒压下进行的化学反应,其产生有用功的能力可以用反应前后自由能的变化来衡量。
自由能的变化:△G = G 产物 — G反应物 = △H _ T△S
△G 代表体系的自由能变化,△H代表体系的焓变化,T代表体系的绝对温度,△S代表体系的熵变化。
焓与熵都是体系的状态函数。
焓代表体系的内能与压力P*体积V之和:H = U + P*V dH = dU + P*dV + V*dP
熵代表体系中能量的分散程度,也就是体系的无序程度:△S = dQ/T ,△S = △S体系+△S环境 ,只有△S≥0,过程才能自发进行。
2、 △G是判断一个过程能否自发进行的根据
△G<0,反应能自发进行,能做有用功。
△G>0,反应不能自发进行,必须供给能量。
△G=0,反应处于平衡状态。
一个放热反应(或吸热反应)的总热量的变化(△H),不能作为此反应能否自发进行的判据,只有自由能的变化才是唯一准确的指标。
△G<0仅是反应能自发进行的必要条件,有的反应还需催化剂才能进行,催化剂(酶)只能催化自由能变化为负值的反应,如果一个反应的自由能变化为正值,酶也无能为力。
当△G为正值时,反应体系为吸能反应,此时只有与放能反应相偶联,反应才能进行。
二、 标准自由能变化及其与化学反应平衡常数的关系
aA+bB → cC+dD
标准自由内能变化:在规定的标准条件下的自由能变化,用△G°表示。
标准条件:25℃,参加反应的物质的浓度都是1mol∕L(气体则是1大气压)。若同时定义pH =7.0,则标准自由能变化用△G°′表示。
对于一个溶液中的化学反应:
aA bB → cC + dD
当反应达到平衡时,△G = 0
K/是化学反应的平衡常数,因此,△G°/ 也是一个常数。
常见物质的标准生成自由能△G°′已经列在各种化学手册中,可以根据△G°′= -RT lnK的公式求出平衡常数K′。
P15 举例说明如何用K/求出△G o / 和△G
从例子可以看出△G o / 和△G实际上是两个不同条件下的自由能变化值。
(1) △G o /是标准条件下的自由能变化,既反应物A、B、C、D的起始浓度都为1mol/L,温度为25℃,pH=7.0时的△G。每一个化学反应都有其特定的标准自由能变化(既△G o /),是一个固定值,
△G是任意给定条件下的自由能变化,它是反应物A、B、C、D的起始浓度、温度、pH的状态函数,在一个自发进行的化学反应中,自由能总是在降低,△G总是负值,随着反应向平衡点的趋近,△G的绝对值逐渐缩小,直到为0。
(2) 从△G o / = -RT lnK/,可以求出K/及△G o /,根据△G o /、△G 与K/可以判断任何条件下反应进行的方向及程度。
三、 自由能变化的可加和性。
在偶联的几个化学反应中,自由能的总变化等于每一步反应自由能变化的总和。
例如:Glc+ATP→G—6—P+ADP(总反应)
第一步,Glc+Pi→G—6—P+H2O,此反应不能自发进行。
第二步,ATP+H2O→ADP+Pi
总反应:Glc+ATP→G—6—P+ADP.
因此,一个热力学上不能进行的反应,可与其它反应偶联,驱动整个反应进行。此类反应在生物体内是很普遍的。
四、 高能磷酸化合物
高能化合物:水解时释放5000卡/mol及以上自由能的化合物。
高能磷酸化合物:水解每摩尔磷酸基能释放5000cal以上能量的磷酸化合物。
P21 表10-2 某些磷酸化合物水解时的标准自由能变化。
(一) 高能化合物的类型 P18—19
1、 磷氧键型。
(1)、 酰基磷酸化合物。
3—磷酸甘油酸磷酸,乙酰磷酸,氨甲酰磷酸,酰基腺苷酸,氨酰腺苷酸。
(2)、 焦磷酸化合物。
无机焦磷酸,ATP,ADP
(3)、 烯醇式磷酸化合物。
磷酸烯醇式丙酮酸。
2、 氮磷键型。
磷酸肌酸,磷酸精氨酸。
3、 硫酯键型。
3’一磷酸腺苷一5’一磷酰硫酸,酰基辅酶A。
4、 甲硫键型。
S一腺苷甲硫氨酸。
(二) ATP的特殊的作用。
1、 是细胞内产能反应和需能反应的化学偶联剂。
2、 在磷酸基转移中的作用 。
Glc进入血液中,唯一出路是磷酸化。G-6-P是Glc的一种活化形式。已糖激酶催化:Glc+ATP→G-6-P+ADP。
3一磷酸甘油是甘油的活化形式,能参与脂肪合成。甘油激酶:甘油+ATP→3一磷酸甘油+ADP。
(三) 磷酸肌酸、磷酸精氨酸的储能作用 P23
磷酸肌酸是易兴奋组织(如肌肉、脑、神经)唯一的能起暂时储能作用的物质。
磷酸精氨酸是无脊椎动物肌肉中的储能物质
第二节 生物氧化、氧化电子传递链和氧化磷酸化作用
一、 生物氧化的概念和特点。
糖,脂,蛋白质等有机物质在细胞中进行氧化分解,生成CO2,H2O并释放出能量,这个过程称生物氧化。
生物氧化是需氧细胞呼吸代谢过程中的一系列氧化还原作用,又称细胞氧化或细胞呼吸。
特点:反应条件温和,多步反应,逐步放能。
生物氧化在活细胞中进行,pH中性,反应条件温和,一系列酶和电子传递体参与氧化过程,逐步氧化,逐步释放能量,转化成ATP。
真核细胞,生物氧化多在线粒体内进行,在不含线粒体的原核细胞中,生物氧化在细胞膜上进行。
图示 :生物氧化的三阶段
第一阶段:多糖,脂,蛋白质等分解为构造单位——单糖、甘油与脂肪酸、氨基酸,该阶段几乎不释放化学能。
第二阶段:构造单位经糖酵解、脂肪酸β氧化、氨基酸氧化等各自的降解途径分解为丙酮酸、乙酰CoA等少数几种共同的中间代谢物物,这些共同的中间代谢物在不同种类物质的代谢间起着枢纽作用。该阶段释放少量的能量。
第三阶段:丙酮酸、乙酰CoA等经过三羧酸循环彻底氧化为CO2、H2O。释放大量的能量。
在第二、第三阶段中,氧化脱下的电子(H—)经过一个氧化的电子传递过程(氧化电子传递链)最终传给O2,并生成ATP,以这种方式生成ATP的作用称为氧化磷酸化作用,它是一种很重要的将生物氧化和能量生成相偶连的机制。
生物氧化的终产物是CO2和H2O,CO2的形成是通过三羧酸循环过程,H2O则是在电子传递过程的最后阶段生成。
二、 氧化电子传递过程
生物氧化过程中形成的还原型辅酶(NADH和FADH2),通过电子传递途径,使其重新氧化,此过程称为电子传递过程。
在电子传递过程中,还原型辅酶中的氢以负质子(H — )形式脱下,其电子经一系列的电子传递体(电子传递链)转移,最后转移到分子氧上,质子和离子型氧结合生成H2O。
三、 氧化电子传递链 P57 图12-2
由NADH到O2的氧化电子传递链主要包括FMN、辅酶Q(CoQ)、细胞色素b、c1、c、a,a3及一些铁硫蛋白。
氧化电子传递链位于原核生物的质膜上,真核生物中位于线粒体的内膜上。
电子载体的标准势能△G o /是逐步下降的,电子沿着电势升高的方向流动。其中有三个部位的势能落差△G较大,足以形成ATP(ADP磷酸化需要的自由能=7.3Kal/mol.)。这三个部位正好是氧化磷酸化部位。
细胞内供能物质的彻底氧化产物是CO2、H2O其中CO2主要是在三羟酸循环中产生,水是在电子传递过程的最后阶段产生。
四、 电子传递链的酶和电子载体
呼吸链中的电子载体都是和蛋白质结合存在(包括NAD+、FMN、铁硫中心、细胞色素)。这些蛋白质大都是水不溶性的,嵌在线粒体的内膜上。
NAD+是许多脱氢酶的辅酶,FMN是NADH脱氢酶的辅酶。
1、 NAD+和NADP+
脱氢酶分别与NAD+或NADP+结合,催化底物脱氢,这类酶称为与NAD(P)相关的脱氢酶,
多数脱氢酶以NAD+为辅酶,少数以NADP+为辅酶(如G-6-P脱氢酶)少数酶能以NAD+或NADP+两种辅酶(Glu脱氢酶)。
2、 NADH脱氢酶以及其它黄素蛋白酶类
NADH脱氢酶含FMN辅基,铁-硫中心。
铁硫中心铁的价态变化(Fe3+→Fe2+)可以将电子从FMN辅基上转移到呼吸链下一成员辅酶Q上。
含有核黄素辅基的酶还包括琥珀酸脱氢酶、脂酰CoA脱氢酶等。
3、 辅酶Q(泛醌)
电子传递链上唯一的非蛋白质成分。
辅酶Q在线粒体中有两种存在形式:膜结合型、游离型。
辅酶Q不仅可以接受FMN上的氢(NADH脱氢酶),还可以接受线粒体FADH2上的氢(如琥珀酸脱氢酶、脂酰CoA脱氢酶以及其它黄素酶类)。
4、 细胞色素类。
细胞色素类是含铁的电子传递体,铁原子处于卟啉的结构中心,构成血红素。
细胞色素类是呼吸链中将电子从辅酶Q传递到O2的专一酶类。
线粒体的电子传递链至少含有5种不同的细胞色素:b、c、c1、.a、a3.
细胞色素b有两种存在形式:b562、b566
细胞色素c是唯一可溶性的细胞色素,同源性很强,可作为生物系统发生关系的一个指标。
细胞色素a、a3是以复合物的形式存在,又称细胞色素氧化酶,将电子从细胞色素c传到分子O2 。
五、 电子传递抑制剂
阻断呼吸链中某一部位的电子传递。
1、 鱼藤酮、安密妥、杀粉蝶菌素
都可阻断电子由NADH向CoQ传递。
2、 抗霉素A
抑制电子从细胞色素b向细胞色素c1传递
3、 氰化物、硫化氢、叠氮化物、CO等。
阻断电子从细胞色素aa3 向O2传递
六、 氧化磷酸化作用
氧化磷酸化作用:电子沿着氧化电子传递链传递的过程中所伴随的将ADP磷酸化为ATP的作用,或者说是ATP的生成与氧化电子传递链相偶联的磷酸化作用。
底物水平磷酸化作用:是指ATP的形成直接与一个代谢中间物(如PEP)上的磷酸基团转移相偶联的作用。糖酵解中1,3-二磷酸甘油酸,磷酸烯醇丙酮酸。
1、 方程式:
NADP+H++3ADP+3Pi+1/2O2 → NAD++3H2O+3ATP
三个ATP的形成获取了呼吸链中电子由NADH传递至氧所产生的全部自由能的42%。(21.9/52.7×100%)。
2、 几个概念:
(1)、 P/O比
一对电子通过呼吸链传至氧所产生的ATP的分子数。NADH→3ATP,FADH2→2ATP
(2)、 ATP生成部位:
三个部位由三个酶复合体催化:
部位Ⅰ:NADP与CoQ之间,NADH脱氢酶。
部位Ⅱ:CoQ与CytC之间,CytC还原酶。
部位Ⅲ:Cyta与O2之间,CytC氧化酶。
(3)、 呼吸控制
ADP作为关键物质,对氧化磷酸化的调节作用称为呼吸控制。
(4)、 解偶联剂,(2.4—硝基苯酚)
电子传递过程和ATP形成过程相分离,电子传递仍可进行,但不能形成ATP。
(5)、 氧化磷酸化抑制剂:
抑制O2的利用和ATP的形成。
七、 氧化磷酸化的偶联机理
P71图12—4,跨膜质子移动示意图
(一) 化学渗透假说
第十三章 DNA的复制和修复
生物体的遗传信息储存在DNA中,并通过DNA的复制由亲代传给子代。在子代的生长发育中遗传信息自DNA转录给RNA,然后翻译成蛋白质以执行各种生命功能,使后代表现出与亲代相似的遗传性状。
1958年,F.Crick提出中心法则:
(1)以原DNA分子为模板,合成出相同DNA分子的过程。
(2)以某一段DNA分子为模板,合成出与其序列对应的RNA分子的过程。
(3)以mRNA为模板,根据三联密码规则,合成对应蛋白质的过程。
中心法则揭示了生物体内遗传信息的传递方向。
图
DNA生物合成有两种方式:DNA复制和反转录
DNA体内复制涉及:原核、真核生物的染色体、细菌质粒(环状,双链)、真核细胞器DNA(线粒体、叶绿体)、病毒(双链,环状)
DNA的体外复制:分子克隆。
第一节 DNA的复制
一、 DNA半保留复制
1953年,Watson和Crick在提出DNA双螺旋结构模型时就推测DNA可能按照半保留机制进行自我复制。
P321 图191 Watson和Crick提出的DNA双螺旋复制模型
在复制过程中,首先亲代双链解开,然后每条链作为模板,在其上合成互补的子代链,结果新形成的两个子代DNA与亲代DNA分子的碱基顺序完全一样,而且每个子代DNA分子中有一条链完全来自亲代DNA,另一条是新合成的。
1958年,Meselson和Stahl用15N标记E.coli. DNA,证明了DNA的复制是半保留复制。
P322 图19-2 DNA的半保留复制。
1963年,Cairns用放射自显影法,在显微镜下首次观察到完整的正在复制的E. coli. 染色体DNA。
P323 图 19-3
3H-脱氧胸苷标记E.coli. DNA ,经过将近两代时间,用溶菌酶消化细胞壁,将E.coli. DNA转至膜上,干燥,压感光胶片,3H放出β粒子,还原银,在光学显微镜下观察。用这种方法证明了大肠杆菌染色体DNA是一个环状分子,并以半保留的形式进行复制。
DNA的半保留复制可以说明DNA在代谢上的稳定性。经过多代复制,DNA的多核苷酸链仍可以保持完整,并存在于后代而不被分解掉。
二、 复制起点、单位和方向
DNA的复制是在起始阶段进行控制的,一旦复制起始,它就会继续下去直到整个复制子完成复制。
1、 复制起点
复制起点是以一条链为模板起始DNA合成的一段序列。有时,两条链的复制起点并不总是在同一点上(如D环复制)。
在一个完整的细胞周期中,每一个复制起点只使用一次,完成一次复制过程。
多数生物的复制起点,都是DNA呼吸作用强烈(甲醛变性实验)的区段,即经常开放的区段,富含A.T。
★环状DNA复制起点的确定方法
P325 图19-6
★复制起点的克隆和功能分析——重组质粒转化法
大肠杆菌的复制起点oriC区1Kb的重组质粒在转化子中的复制行为与其染色体一样,受到严密控制,每个细胞只有1-2个拷贝,用核酸外切酶缩短oriC克隆片段的大小,最后得到245bp的基本功能区,携带它的质粒依然能够自我复制,拷贝数可以增加到20以上,这说明发动复制的序列在245bp的基本功能区,而决定拷贝数的序列在基本功能区之外和1Kb之间。
鼠伤寒沙门氏菌的起点位于一段296bp的DNA片段上,与大肠杆菌的复制起始区有86%同源性,而且有些亲缘关系较远的细菌,其复制起点在大肠杆菌中亦能起作用。因此,复制起始区的结构可能是很保守的。
起始序列含有一系列对称的反向重复和某些短的成簇的保守序列。
2、 复制单位
复制子(Replicon):Genome能独立进行复制的单位,每个复制子都含有一个复制起点。
原核生物的染色体和质粒、真核生物的细胞器DNA都是环状双链分子,它们都是单复制子,都在一个固定的起点开始复制,复制方向大多数是双向的,少数是单向复制。多数是对称复制,少数是不对称复制(一条链复制后才进行另一条链的复制)。
环状DNA的复制眼象θ,称θ形复制。
真核生物的染色体DNA是线形双链分子,含有许多复制起点,因此是多复制子,每个复制子约有100-200Kbp。人体细胞平均每个染色体含有1000个复制子。
病毒DNA多种多样,环状或线形,双链或单链,但都是单复制子。
3、 复制方向
定点起始,复制方向大多数是双向的(等速进行或异速进行),形成两个复制叉,少数是单向复制,形成一个复制叉。
★用放射自显影实验判断DNA的复制方向及速度
低放射性3H-脱氧胸苷
高放射性3H-脱氧胸苷
a. 单向
b. 双向等速 三种结果图形
c. 双向异速
E.coli.的一个温度敏感株,在42℃时,能使DNA在完成复制后,不再开始新的复制过程,而在25℃时复制功又能能恢复。
4、 DNA的几种复制方式
(1)、 直线双向复制
单点,双向,T7
多点,双向,真核染色体DNA
(2)、 θ型复制:环状双链DNA,单向或双向(E .coli.)
(3)、 滚环复制:环状单链DNA,Φx174
(4)、 D环复制:线粒体、叶绿体DNA
(5)、 多复制叉复制:
第一轮复制尚未完成,复制起点就开始第二轮的复制。
在E.coli.富营养时,可采取多复制叉复制方式。E.coli. DNA的复制最快可达50Kb/min,完全复制需40min,富营养时,20min分裂。而真核染色体要6-8小时。
三、 与DNA复制有关的酶及蛋白质因子
目前已发现30多种酶及蛋白质因子参与DNA复制
(一) DNA的聚合反应和聚合酶
DNA生物合成5,→3,,化学合成3,→5,
1、 DNA聚合反应必备的条件
⑴ DNA聚合酶
⑵ DNA模板(反转录时用RNA模板)
⑶引物 (DNA、RNA或蛋白质)
⑷ 4种dNTP
⑸ Mg2+
2、 聚合反应过程及特点
总反应式:
n1dATP DNA pol . dAMP
n2dGTP +DNA dGMP DNA+(n1+n2+n3+n4)PPi
n3dCTP Mg2+ dCMP
n4dTTP dTMP
P329 图19-10 P330图19-11
在链的延长过程中,链的游离3,-羟基,对进入的脱氧核糖核苷三磷酸α磷原子发生亲核攻击,生成3,.5,-磷酸二酯键,并脱下焦磷酸。
DNA聚合酶的反应特点:
⑴ 以4种dNTP为底物
⑵ 反应需要接受模板的指导,不能催化游离的dNTP的聚合。
⑶ 反应需有引物3,-羟基存在
⑷ 链生长方向5, → 3,
⑸ 产物DNA的性质与模板相同
3、 由DNA聚合酶催化的几种DNA聚合类型
P331图19-12
(1) 发荚环结构:加入单链DNA作为模板和引物,3'羟基端回折成引物链。
(2) 末端延伸聚合:加入双链DNA作为模板和引物,3’末端突出作为模板。
(3) 分枝型和切口平移型聚合:加入双链DNA,聚合发生在切口或末端单链区。
(4) 环形聚合:加入带引物的环形DNA作为模板。
4、 E.coli DNA聚合酶
(1)、 E.coli. DNA pol.I(Kornberg酶,400 copy/cell)
单体酶,分子量109Kd,含一个Zn2+,每个细胞中含400个DNA pol.Ⅰ
催化活性:
5, → 3, 聚合活性
3, → 5, 外切活性
5, → 3, 外切活性
用蛋白水解酶将DNA pol.Ⅰ部分水解可得:
大片段(Klenow),75Kd,活性:5, → 3,聚合活性、3, → 5,外切活性。
小片段,36Kd,活性:5, → 3,外切活性(只作用于双链DNA的碱基配对部分,切除修复)。
Klenow片段的用途:
a 补齐DNA 3,隐缩未端
b. 标记DNA片段未端
c.cDNA合成第二链
d.d DNA测序
(2)、 E.coli. DNA Pol.Ⅱ(100 copy/cell)
单体酶,分子量120Kd
催化活性:5,→ 3,聚合(活性很低)
3,→ 5,外切
可能在DNA的修复中起某中作用。
(3)、 E.coli.DNA pol.Ⅲ(复制酶,10-20 copy/cell)
寡聚酶,全酶由10种共22个亚基组成,α、ε和θ三种亚基组成核心酶。
P334表10-3
DNA pol.Ⅲ是合成新链DNA主要的酶,又称复制酶(Replicase)
Pol.Ⅲ的5,→3,外切酶活性只作用于单链DNA。
P334 表19-2 E.coli三种DNA聚合酶的性质比较
★DNA聚合酶有6个结合位点
⑴ 模板DNA结合位点
⑵ 引物结合位点
⑶ 引物3,-OH位点、反应位点
⑷ 底物dNTP结合位点
⑸ 5, → 3, 外切位点(pol.Ⅱ没有)
⑹ 3, → 5, 外切位点(校正)
5、 真核生物DNA聚合酶
P334 表19-4 真核生物DNA聚合酶
真核DNA聚合酶一般不具备外切活力,可能由另外的酶在DNA复制中起校正功能。
⑴ DNA聚合酶α,多亚基,功能与E.coli. pol.Ⅲ类似,是真核DNA复制酶。
⑵ DNA聚合酶β,主要在DNA损伤的修复中起作用。
⑶ DNA聚合酶γ,从线粒体得到,可能与线粒体DNA的复制有关。
⑷ DNA聚合酶δ,特点:有3, → 5,外切活力
(二) 引物酶或RNA聚合酶(引发酶)
细胞内,DNA的复制需要引物(DNA或RNA),引物酶或RNA聚合酶可合成6-10个碱基的RNA引物。
★DNA复制为什么要用RNA引物?(为什么DNA聚合酶要用引物,RNA聚合酶不需要引物?)
P338
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
(三) 解螺旋酶
大肠杆菌的解螺旋酶Ⅰ、Ⅱ、Ⅲ与rep蛋白共同作用,将DNA两条链解开。
解螺旋酶I、II、III沿着模板链的5’→3’方向随着复制叉的前进而移动,而rep蛋白则在另一条模板链上沿3’→5’方向移动。
(四) DNA旋转酶
属DNA拓扑异构酶Ⅱ,可引入负超螺旋,消除复制叉前进时带来的扭曲张力。
拓扑异构酶分两类:I和II,广泛存在于原核生物和真核生物。
拓扑异构酶I使DNA的一条链发生断裂和再连接,反应无须供给能量,主要集中在活性转录区,与转录有关。
拓扑异构酶Ⅱ使DNA的两条链同时断裂和再连接,当它引入超螺旋时需要由ATP供给能量。分布在染色质骨架蛋白和核基质部,与复制有关。
(五) 单链DNA结合蛋白(SSB)
复制叉上的解螺旋酶,沿双链DNA前进,产生单链区,大量的单链DNA结合蛋白与单链区结合,阻止复性和保护单链DNA不被核酸酶降解。
(六) DNA连接酶(ligase)
连接双链DNA上的切口。
大肠杆菌连接酶只能在模板上连接DNA缺口。T4DNA ligase即可连接粘性末端的DNA,又可连接平齐末端的双链DNA。
E.coli.和其它细菌的DNA ligase以NAD为能源,动物细胞和噬菌体DNA ligase以ATP为能源。
(七) DNA复制的拓扑结构
P338-339
四、 DNA的半不连续复制
P336 图19-15 DNA的半不连续复制
DNA聚合酶催化的方向是5,→3,。
前导链:
滞后链:
1968年,发现冈崎片段。长度:
细菌:1Kb-2Kb,相当于一个顺反子的大小。
真核:100-200bp,约等于一个核小体DNA的长度。
五、 DNA复制过程(E.coli.)
P342 图19-17 大肠杆菌的复制体结构示意图
1、 复制的起始
引发:当DNA的双螺旋解开后,合成RNA引物的过程。
引发体:引物合成酶与各种蛋白质因子(dnaB、dnaC、n、n'n''I)构成的复合体,负责RNA引物的合成。
引发体沿着模板链5’→3’方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动的方向相同),移到一定位置上即可引发RNA引物的合成。
E.coli.DNA复制原点ori C,由245bp组成,三组13bp重复序列(近5,端处),四组9 bp重复序列(另一端处)。
图
大肠杆菌复制原点起始复制所需蛋白质:
DNaA 在原点处打开双螺旋
DNaB 使DNA解旋
DNaC DNaB结合在原点所需
Hu 刺激起始
引物酶(DNaG) 合成RNA引物
SSB 结合单链DNA
RNA聚合酶 促进DNaA活性
旋转酶 松驰DNA扭曲应力
20个DnaA结合在四组9bp重复区,形成起始复合物,DNA环绕此复合物。
三组13bp重复区依次变性,产生开放型复合物。
DnaB(在DnaC协助下)与开放复合物结合,进一步解链。
2、 DNA链的延长反应
前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反应由DNA pol.Ⅲ催化。
复制体:在DNA合成的生长点(既复制叉上)分布着许多与复制有关的酶和辅助因子,它们在DNA的模板链形成离散的复合物,彼此配合进行高度精确的复制,称为复制体。
复制体沿着复制叉方向前进就合成DNA。
3、 RNA引物的切除及缺口补齐
DNA polⅠ的5, → 3,外切活力,切除RNA引物。
DNApolⅠ的5, → 3,合成活性补齐缺口。
4、 DNA切口的连接
DNA ligase,动物、真核由ATP供能,原核由NAD供能。
5、 DNA合成的终止
环状DNA、线性DNA,复制叉相遇即终止。
u 小结:
⑴ DNA解螺旋酶解开双链DNA。
⑵ SSB结合于DNA单链。
⑶ DNA旋转酶引入负超螺旋,消除复制叉前进时带来的扭曲张力。
⑷ DNA引物酶(在引发体中)合成RNA引物。
⑸ DNA pol.Ⅲ在两条新生链上合成DNA。
⑹ DNA polⅠ切除RNA引物,并补上DNA。
⑺ DNA ligase连接一个冈崎片段。
DNA复制过程中,聚合酶对dTTP和dUTP的分辨能力高,有少量dUTP掺入DNA链中,此时,U-糖苷酶、AP内切酶、DNA polⅠ、DNA ligase共同作用,切除尿嘧啶,接上正确的碱基。
六、 真核生物DNA的复制 P343
1、 复制起点和单位
真核生物染色体DNA是多复制子,有多个复制起点,可以多点起始,分段进行复制。每个复制子大多在100-200bp之间,比细菌染色体DNA(单复制子)小得多。
★试验证据:5-氟脱氧胞苷标记
真核生物DNA复制叉移动的速度此原核的慢,如哺乳动物复制叉移动的速度每分钟1-3Kb,细菌每分钟5Kb。
真核生物染色体全部复制完成前,起点不再从新开始复制。而在快速生长的原核生物中,起点可以连续发动复制。真核生物在快速生长时,可采用更多的复制起点同时复制。如黑腹果蝇,早期胚胎细胞中相邻复制起点的平均距离为7.9kb,而在培养的成体细胞中,平均距离为40kb,成体细胞只利用一部分复制起点。
2、 复制过程中组蛋白的装配
核小体的结构(200bp左右)
在真核生物的复制子上,亲代染色体的核小体被逐个打开,组蛋白以完整的八聚体形式直接转移到子代DNA的前导链上,新合成的组蛋白与后随链组装成核小体。因此,DNA的复制是半保留的,而组蛋白则是全保留的。
★试验证据:环己酮亚胺抑制组蛋白合成,电子显微镜下观察
3、 真核生物DNA复制的终止
端粒:一段DNA序列与蛋白质形成的一种复合体,是真核细胞染色体末端所特有的结构。
功能:
⑴保证线性DNA的完整复制
⑵保护染色体末端
⑶决定细胞寿命,胚系细胞含端粒酶,体细胞不表达端粒酶。
端粒(telomeres)分布于线性真核染色体未端。酵母端粒约100bp的重复序列,形式为:5,(TxGy)n3,(AxCy) n,x和y一般为1—4。
端粒末端的重复序列,通过端粒酶(telomerase)将其加到染色体末端。
端粒酶含有RNA和蛋白质(起DNA聚合酶的作用)两种组分,RNA分子约159b,含有多个CyAx重复序列,RNA分子用作端粒TxGy链合成的模板。端粒酶是一种反转录酶,它只合成与酶自身的RNA模板互补的DNA片段。
人类体细胞的端粒长度,随个体年龄增加而逐渐缩短。细胞每分裂一次,端粒缩短50-200bp,短至1-4Kbp时,细胞就停止分裂。若能重建端粒,则细胞可以永远分裂。恶性肿瘤细胞端酶表达多。
⑴杂交
图
⑵聚合
图
⑶转位再杂交
图
⑷进一步聚合
图
⑸非标准GG配对
图
七、 DNA复制的调控
八、 DNA复制的真实性
《杨岐生》P144
生物体DNA复制具有高度真实性,复制107-1011碱基对,只有一个错误碱基。
碱基对的自由能通常在4-13KJ/mol,这样的自由能相当于平均参入100个核苷酸就可能出现一次错配,仅靠Watson-Crick双螺旋的碱基配对原则,突变率将高达10-2 。
1、 DNA聚合酶对碱基的选择作用
酶的被动论:不同的核苷酸在聚合位点停留时间不同,正确的dNTP能长时间停留,而参与聚合。DNA聚合酶能依照模板的核苷酸,选择正确的dNTP掺入引物末端。
酶积极参与理论:DNA聚合酶对正确与错误的核苷酸,不仅亲和性不同,而且将它们插入DNA引物端的速度也不同。
动力学校正阅读:在新的磷酸二酯键未形成时,dNTP结合在酶与模板—引物复合物的聚合位点上,DNA聚合酶能识别正确与错误的dNTP。
DNA聚合酶对底物的识别作用,DNA聚合酶有两种底物,一种是DNA模板—引物,另一种是dNTP。
DNA聚合酶先识别DNA模板和引物的3,未端,再识别底物dNTP,是一种有序的识别过程。
2、 3,→5,外切活性的校正阅读
E. coli. DNA pol.Ⅰ和pol.Ⅲ有3,→5,外切活性,可删除错误插入的核苷酸。
缺失3, →5,外切活性的E. coli. DNA pol.Ⅰ,催化DNA合成时,出现错误的几率增高5-50倍。因此,3,→5,外切活性可以使DNA复制的真实性,提高1-2个数量级。
图
3、 影响DNA合成真实性的因素
⑴高浓度NMP(如3,-AMP, 5,-GMP)
NMP竞争酶的dNTP结合位点,抑制3,→5,外切活性。
⑵某一种dNTP浓度银高,可使引物3,末端离开外切活性中心。
⑶dNTP 一般与二价阳离子结合成活化形式,Mg2+为主要的二价阳离子。当用其它二价阳离子(如Mn2+)代替Mg2+时,会改变酶的主体结构,影响聚合活性和3,→3,外切活性。
4、 为什么用RNA引物
⑴从模板复制最初几个核酸时,碱基堆集力和氢键都较弱,易发生错配
⑵新复制的最初几个核苷酸,没有与模板形成稳定双链,DNA聚合酶的5,→3,校对功能难发挥作用。
第二节 DNA的损伤及修复
DNA的损伤,《罗纪盛》P428
一些物理化学因子如紫外线、电离辐射和化学诱变剂均可引起DNA损伤,破坏其结构与功能。然而在一定条件下,生物机体能使这种损伤得到修复。
紫外线可使DNA分子中同一条链上两个相邻的胸腺嘧啶碱基之间形成二聚体(TT),两个T以共价键形成环丁烷结构。CT、CC间也可形成少量二聚体(CT、CC),使复制、转录受阻。
P346图19-22
细胞内具有一系列起修复作用的酶系统,可以除去DNA上的损伤,恢复DNA的双螺旋结构。目前已知有4种酶修复系统:光复活、切除修复、重组修复、SOS反应诱导的修复,后三种不需要光,又称为暗修复。
一、 直接修复
1949年已发现光复活现象,可见光(最有效400nm)可激活光复活酶,此酶能分解由于紫外线形成的嘧啶二聚体。高等哺乳动物没有此酶。
P347 图19-23 紫外线损伤的光复活过程
A 形成嘧啶二聚体 B. 光复合酶结合于损伤部位 C 酶被可见光激活 D. 修复后释放酶
二、 切除修复
P348 图19-24 DNA损伤的切除修复过程
在一系列酶的作用下,将DNA分子中受损伤部分切除,并以完整的那一条链为模板,合成出切去部分,DNA恢复正常结构。
I、结构缺陷的修复:
(1)核酸内切酶识别DNA损伤部位,在其附近将其切开。
(2)核酸外切酶切除损伤的DNA。
(3)DNA聚合酶修复。
(4)DNA连接酶连接。
图
II、无嘌呤无嘧啶——碱基缺陷或错配——脱碱基(N-糖苷酶):
甲基磺酸甲酯可使鸟嘌呤第7位氮原子烷基化,活化β—糖苷键,造成脱嘌呤作用;酸也能使DNA脱嘌呤。
DNA复制时,DNA聚合酶对dTTP和dUTP分辨力不高,有少量dUTP掺入DNA链。细胞中的尿嘧啶-N-糖苷酶可以切掉尿嘧啶。腺嘌呤脱氨形成次黄嘌呤时也可以被次黄嘌呤-N-糖苷酶切掉次黄嘌呤。
对于无嘌呤无嘧啶的损伤有两种修复方法:
(1) AP核酸内切酶切开,核酸外切酶切除,DNA聚合酶修复,DNA连接酶连接。
(2) 插入酶插入正确碱基三、 重组修复
P349图19—25重组修复的过程
切除修复发生在DNA复制之前,而当DNA发动复制时尚未修复的损伤部位,可以先复制,再重组修复。
在重组修复过程中,DNA链的损伤并未除去。
重组修复至少需要4种酶组分。
重组基因recA编码一种分子量为40000的蛋白质,它具有交换DNA链的活力。RecA蛋白被认为在DNA重组和重组修复中均起关键作用。
recB、recC基因分别编码核酸外切酶V的两个亚基。
此外,修复合成还需要DNA聚合酶和连接酶。
四、 易错修复和应急反应(SOS反应)
诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。
SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和倾向差错的修复。
避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。
倾向差错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于倾向差错的修复。
SOS反应是由RecA蛋白和LexA阻遏物相互作用引起的。RecA蛋白不仅在同源重组中起重要作用,而且它也是SOS反应的最初发动因子。在有单链DNA和ATP存在时,RecA蛋白被激活而表现出蛋白水解酶的活力,它能分解λ噬菌体的阻遏蛋白和LexA蛋白。LexA蛋白(22Kd)许多基因的阻遏物,当它被RecA的蛋白水解酶分解后就可以使一系列基因得到表达其中包括紫外线损伤的修复基因uvrA、uvrB、uvrC(分别编码核酸内切酶的亚基)以及recA和lexA基因本身,还有单链结合蛋白基因ssb,与λ噬菌体DNA整合有关的基因himA、与诱变作用有关的基因umuDC,与细胞分裂有关的基因sulA,ruv,和lon,以及一些功能不清楚的基因dinA,B,D,F等。
SOS反应广泛存在于原核生物和真核生物,它是生物在极为不利的环境中求得生存的一种基本功能。
然而癌变有可能也是通过SOS反应造成的,因为能引起SOS反应的作用剂通常都具有致癌作用,如X-射线,紫外线,烷化剂,黄曲霉素等,而某些不能致癌的诱变剂并不引起SOS反应,如5-溴尿嘧啶。目前,有关致癌物的一些简便检测方法就是根据SOS反应原理而设计的,既测定细菌的SOS反应。
第三节 RNA指导的DNA合成(反转录)
反转录(reverse transcription):以RNA为模板,合成DNA。与通常转录过程中遗传信息流从DNA到RNA的方向相反。
1970年,Temin 和Baltimore分别从致癌RNA病毒(劳氏肉瘤病毒和鼠白血病病毒)中发现发反转录酶。
致癌RNA病毒是一大类能引起鸟类、哺乳类等动物白血病、肉瘤以及其它肿瘤的病毒。这类病毒侵染细胞后并不引起细胞死亡,却可以使细胞发生恶性转化。经过改造后可以作为基因治疗的载体。
放线菌素D(抑制以DNA为模板的反应,复制和转录)能抑制致癌RNA病毒的复制,可见致癌RNA病毒的复制过程必然涉及DNA。
Bader 用嘌呤霉素(puromycin)来抑制静止细胞蛋白质的合成,发现这种细胞仍能感染劳氏肉瘤病毒(RSV),证实反转录酶是由反转录病毒带入细胞的,而不是感染后在宿主细胞中新合成的。
一、 反转录酶
由一个α亚基和一个β亚基组成,含有Zn2+,具有三种酶活力。
(1)RNA指导的DNA聚合酶活力(以RNA为模板,合成一条互补的DNA,形成RNA—DNA杂种分子)。
(2)RNase H酶活力,水解RNA—DNA杂种分子中的RNA,可沿3’→5’和5’→3’两个方向起外切酶作用。
(3)DNA指导的DNA聚合酶活力。
模板:RNA或DNA
以自身病毒类型的RNA为模板时,该酶的反转录活力最大,但是带有适当引物的任何种类的RNA都能作为合成DNA的模板。
引物:RNA或DNA
底物:dNTP
二价阳离子:Mg2+或Mn2+
真核mRNA3’端有polyA,加入oligo dT后,可以作为反转录酶的模板,合成cDNA。
二、 病毒RNA的反转录过程
所有已知的致癌RNA病毒都含有反转录酶,因此被称为反转录病毒(retrovirus),反转录病毒的复制需要经过一个DNA中间体(前病毒)。
1、 反转录病毒的基因组结构
P353 图19-27
(1) 反转录病毒基因组通常由两条相同的(+)RNA链组成。5’端附近区域以氢键结合在一起,全长7-10Kb。
(2) 每一条RNA链的两端具有相同的序列,形成正向重复序列。
(3) 5’端有帽子结构,3’端有polyA,与真核mRNA相似。
(4) 5’端带有1分子的宿主tRNA,作为反转录时的引物。某些鸟类反转录病毒携带的是tRNAtrp,鼠类是tRNApro
2、 反转录过程。
当致癌RNA病毒侵染宿主细胞时,病毒RNA及反转录酶一起进入宿主细胞,病毒自身带入的反转录酶使RNA反转录成双链DNA。
(1) 以病毒(+)RNA为模板,合成互补的(-)DNA。
(2) 切除RNA—DNA杂种分子中的RNA。
(3) 以(-)DNA链为模板,合成(+)DNA链,最后形成两端带有LTR(长末端重复序列)的双链DNA。
反转录病毒只有整合到宿主染色体DNA后才能被转录,转录产物经拼接可以产生不同的病毒mRNA。LTR(长末端重复序列)对前病毒DNA整合到宿主染色体DNA以及整合后的转录均起着重要作用。
反转录病毒合成的过程:
图
缺口的模板(基因组)RNA,在U3旁生成一个正链DNA的合成RNA的引物,而其余的模板RNA被降解。
正链DNA合成开始,复制。
图
3、 反转录病毒的生活周期
P354 图19-29
(1) 病毒粒子侵染细胞,病毒RNA和反转录酶一起进入细胞。
(2) RNA被反转录成双链DNA(前病毒),环化,进入细胞核。
(3) 反转录病毒的DNA整合到宿主染色体DNA中。
(4) 前病毒DNA进行复制,转录出功能基因、基因组RNA和病毒蛋白。
(5) 基因组RNA和病毒蛋白在胞质中组装成新病毒粒子,转移到质膜,通过出芽方式释放新病毒粒子。
三、 反转录的生物学意义。
1.反转录酶存在于所有致癌RNA病毒中,它的存在与RNA病毒引起细胞恶性转化有关。
2.艾滋病毒(AIDS)
人类免疫缺陷病毒(HIV),也是一种反转录病毒,主要感染T4淋巴细胞和B淋巴细胞。病毒粒子直径100nm,球状,粒子外包被两层脂质质膜,膜上有糖蛋白(gp120、gp41),另有两层衣壳蛋白p24、p18。
HIV基因组由两条单链正链RNA组成,每个链长9.7kb,RNA 5,端有帽子结构,3’端有PolyA,链上结合有反转录酶。
3.乙肝病毒
大蛋白、中蛋白、主蛋白(表面抗原)
核心抗原
双链环状DNA
乙肝病毒与反转录病毒的区别:
P355
4、真核生物正常细胞内也存在反转录过程
真核生物的谈色体基因组中存在为数众多的逆假基因和逆基因。
逆假基因:无启动子和内含子,但有polyA的残基,推测是由mRNA反转录后整合到基因组中去的。
逆基因:具有启动子和转录功能,无内含子。可能是由于mRNA反转录后刚好整合到启动子的下游处,或者是带启动子的RNA序列反转录后整合到基因组中
第四节 DNA合成技术
一、 cDNA合成
1、 cDNA文库的构建
cDNA:以mRNA为模板,用反转录酶合成第一链,去除mRNA,合成的第二链。
cDNA文库是获得真核结构基因的最好方法,成熟的mRNA无内含子。
(1)、 真核mRNA的分离纯化
特点:含量少,不均一,表达具有发育阶段性和组织特异性。
总RNA: rRNA 80~85%
mRNA 1~5%
tRNA及其它小分子RNA 10~15%
不均一:在1~5%的mRNA中,有10000—30000种mRNA。
分离、纯化:
用Oligo dT纤维素柱(亲和层析法),加入总RNA,高盐洗脱,先流出非mRNA,降低盐浓度,加入Oligo dA竞争,可洗出mRNA 混合物。
免疫法可分离特定的mRNA。
(2)、 cDNA合成(反转录酶)
A. 自身引物法(S1核酸酶降解法)
图
Oligo(dT)15-18个核苷酸
mRNA5’端序列有丢失。
B. 取代合成法(较常用)
图
Oliyo(dT)与mRNA3’端AAA杂交作为引物,合成第一条DNA链。
RNaseH在mRNA上产生多个切口。
DNA pol.Ⅰ切口平移,DNA ligase连接,合成出第二条DNA链。
T4DNA pol.切去端头的RNA-DNA杂交链。
C. 引物合成法
可以合成全长cDNA,mRNA的5’端不丢失。
图
(3)、 cDNA与载体连接
(4)、 重组体的转化
(5)、 扩增、保存
2、 获取特定mRNA的cDNA
(1)免疫法分离特定的mRNA
(2)PCR法
二、 PCR技术(聚合酶链式反应)
Polymerase chain Reaction
以目的基因或DNA片段为模板,在引物介导及Taq DNA聚合酶催化下,在体外用核苷酸大量合成目的基因或DNA片段。
它能快速、专一地扩增所希望得到的目的基因或DNA片段。
1、 反应物
(1)模板
单、双链DNA或cDNA都可以作为PCR的模板,若以RNA为起始材料,则须经反转录,获得第一条cDNA后才能用于PCR。
(2)Taq DNA聚合酶
DNA聚合酶是进行PCR扩增的关键,从水生栖热菌(Thermus aquaticns VT-1)分离出来。
Taq DNA聚合酶有很好的热稳定性,92.5℃处理130min,仍保留50%的酶活性,在74℃活性最高,错误掺入核苷酸的比率为1/7500。
(3)引物
引物是决定PCR结果的关键,它由寡核苷酸组成,15-30个b
(4)核苷酸dNTP
dNTP的浓度50-200umul/L。
(5)镁离子Mg2+
2、 PCR原理
图
变性 95℃
复性 55℃
延伸 72℃
第十四章 RNA的生物合成
RNA的生物合成包括转录和RNA的复制。
转录(transcription):以一段DNA的遗传信息为模板,在RNA聚合酶作用下,合成出对应的RNA的过程,或在DNA指导下合成RNA。
转录产物:mRNA 、rRNA、 tRNA、小RNA
除某些病毒基因组RNA外,绝大多数RNA分子都来自DNA转录的产物。
转录研究的主要问题
①RNA聚合酶 ②转录过程 ③转录后加工 ④转录的调控
①~③是基本内容,④是目前研究的焦点,转录调控是基因调控的核心。
转录与DNA复制的异同:
相同:要有模板,新链延伸方向5’→3’,碱基的加入严格遵循碱基配对原则。
相异:①复制需要引物,转录不需引物。
②转录时,模板DNA的信息全保留,复制时模板信息是半保留。
③转录时,RNA聚合酶只有5’→3’聚合作用,无5’→3’及3’→5’外切活性。
转录是基因表达的第一步,也是最关键的一步。
基因表达的终产物:①RNA ②蛋白质
转录过程涉及两个方面
①RNA合成的酶学过程
②RNA合成的起始信号和终止信号,即DNA分子上的特定序列。
DNA正链:与mRNA序列相同的DNA链。
负链:与正链互补的DNA链。
转录单位的起点核苷酸为+1,起点右边为下游(转录区),转录起点左侧为上游,用负数表示:-1,-2,-3。
第一节 DNA指导的RNA合成(转录)
RNA链的转录,起始于DNA模板的一个特定位点,并在另一位点终止,此转录区域称为一个转录单位。一个转录单位可以是一个基因(真核),也可以是多个基因(原核)。
基因的转录是有选择性的,细胞不同生长发育阶段和细胞环境条件的改变,将转录不同的基因。
转录的起始由DNA上的启动子区控制,转录的终止由DNA上的终止子控制,转录是通过DNA指导的RNA聚合酶来实现的。
一、 RNA聚合酶
RNA合成的基本特征
①底物:NTP(ATP、GTP、CTP、UTP)
②RNA链生长方向:5’→3’
③不需引物
④需DNA模板
反应:
1、 E.coli RNA聚合酶(原核)
E.coli和其它原核细胞一样,只有一种RNA聚合酶,合成各种RNA(mRNA、tRNA、rRNA)。
一个E.coli细胞中约有7000个RNA聚合酶分子,在任一时刻,大部分聚合酶(5000左右)正在参与RNA的合成,具体数量依生长条件而定。
E.coli RNA聚合酶全酶|(holoenzyme)分子量46万Da,由六个亚基组成,α2ββ’ σω,另有两个Zn2+。
无σ亚基的酶叫核心酶,核心酶只能使已开始合成的RNA链延长,而不具备起始合成活性,加入σ亚基后,全酶才具有起始合成RNA的能力,因此,σ亚基称为起始因子。
E.coli RNA聚合酶各亚基的大小与功能:
亚基 亚基数 分子量(KD) 基因 功能
β’ 1 160 rpoC 与模板DNA结合
β 1 150 rpoB 与核苷酸结合,起始和催化部位。
σ 1 70 rpoD 起始识别因子
α 2 37 rpoA 与DNA上启动子结合
ω 1 9 ---- 不详
不同的细菌,β’、β、α亚基分子量变化不大,σ亚基分子量变化较大,44KD~92KD。
σ亚基的功能:核心酶在DNA上滑动,σ亚基能增加酶与DNA启动子的结合常数,增加停留时间,使聚合酶迅速找到启动子并与之结合,σ亚基本身无催化活性。
不同的σ因子识别不同的启动子,从而表达不同的基因。
不同的原核生物,都具有相同的核心酶,但σ亚基有所差别,这决定了原核基因表达的选择性。
RNA聚合酶的催化活性:RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。
P360 图20-1RNA聚合酶的活性中心
核心酶覆盖60bp的DNA区域,其中解链部分17bp左右,RNA-DNA杂合链约12bp。
纯的RNA聚合酶,在离体条件下可转录双链DNA,但在体内,DNA的两条链中只有一条可用于转录,这可能是由于RNA聚合酶在分离时丢失了σ亚基引起的。
解旋和重新螺旋化也是RNA聚合酶的内在特性,在酶的前端解螺旋,在后端以相反方向重新螺旋化,活体状况中,可能还有其它酶活性来帮助调整DNA的拓扑学性质。
37℃时,RNA聚合酶的聚合速度可达40~100个核苷酸/秒
2、 真核生物RNA聚合酶
真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。这三种RNA聚合酶分子量都在50万左右,亚基数分别为6-15。
P362 表20-3 真核生物RNA聚合酶的分类、分布及各自的功能
动物、植物、昆虫等不同来源的细胞,RNApolⅡ的活性都可被低浓度的α-鹅膏蕈碱抑制,而RNApolⅠ不受抑制。
动物RNApolⅢ受高浓度的α-鹅膏蕈碱抑制,而酵母、昆虫的RNApolⅢ不受抑制。
除了细胞核RNA聚合酶外,还分离到线粒体和叶绿体RNA聚合酶,它们的结构简单,能转录所有种类的RNA,类似于细菌RNA聚合酶。
3、 噬菌体T3和T7编码的RNA聚合酶
仅为一条分子量11KD的多肽链,这些聚合酶只需要识别噬菌体DNA的少数启动子,并无选择地与其作用,37℃时的聚合速度200nt/秒。
二、 RNA聚合酶催化的转录过程(E.coli)
P361 图20-2
1、 起始
RNA聚合酶结合到DNA双链的特定部位,局部解开双螺旋,第一个核苷酸掺入转录起始位点,从此开始RNA链的延伸。
在新合成的RNA链的5’末端,通常为带有三个磷酸基团的鸟苷或腺苷(pppG或pppA),即合成的第一个底物是GTP或ATP。
起始过程中,σ因子起关键作用,它能使聚合酶迅速地与DNA的启动子结合,σ亚基与β’结合时,β’亚基的构象有利于核心酶与启动子紧密结合,。
正链:与mRNA序列相同的两、链。
负链:模板链。
转录起点是+1,上游是-1。
2、 延长
转录起始后,σ亚基释放,离开核心酶,使核心酶的β’亚基构象变化,与DNA模板亲和力下降,在DNA上移动速度加快,使RNA链不断延长。
转录起始后,σ亚基便从全酶中解离出来,然后nusA亚基结合到核心酶上,由nusA亚基识别序列序列。
3、 终止
RNA聚合酶到达转录终止点时,在终止辅助因子的帮助下,聚合反应停止,RNA链和聚合酶脱离DNA模板链,nusA又被σ亚基所取代。。
由此形成RNA聚合酶起始复合物与终止复合物两种形式的循环
三、 启动子和转录因子
启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列。
转录因子:RNA聚合酶在进行转录时,常需要一些辅助因子(蛋白质)参与作用,此类蛋白质统称为转录因子。
足迹法和DNA测序法确定启动子的序列结构。
P363
(一) 原核启动子结构与功能
分析比较上百种启动子序列,发现不同的启动子都存在保守的共同序列,包括RNA聚合酶识别位点和结合位点。
(1)、 -10序列(Pribnow框)
在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。
频度: T89 A89 T50 A65 A65 T100
据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。
目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。
RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。
(2)、 -35序列(Sexfama box)(识别区域)
只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。
各碱基出现频率如下:T85 T83 G81 A61 C69 A52 ,其中TTG十分保守。
-35序列的功能:它是原核RNA聚合酶全酶依靠σ因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。
-35序列提供RNA聚合酶识别信号,
-10序列有助于DNA局部双链解开,
启动子结构的不对称性决定了转录的方向。
P364 图20-4 原核型启动子的结构
(二) 真核启动子
真核基因的转录十分复杂,对启动子的分析要比原核基因的困难得多。
真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA,这三类聚合酶的启动子各有其结构特点。
1、 RNA聚合酶Ⅱ的启动子
RNA聚合酶Ⅱ的启动子有三个保守区:
(1)、 TATA框(Hogness框)
中心在-25至-30,长度7bp左右。
碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。
此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。
TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。
由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。
(2)、 CAAT框
中心在-75处,9bp,共有序列GGT(G)CAATCT
功能:与RNA聚合酶结合。
(3)、 GC框
在CAAT框上游,序列GGGCGG,与某些转录因子结合。
CAAT和GC框均为上游序列,对转录的起始频率有较大影响。
2、 RNApolⅢ的启动子
RNApolⅢ的启动子在转录区内部。
P365图20-5 由RNA聚合酶III转录的三个基因的启动子
四、 终止子和终止因子
终止子:提供转录终止信号的一段DNA序列。
终止因子:协助RNA聚合酶识别终止子的蛋白质辅助因子。
有些终止子的作用可被特异的因子所阻止,使酶越过终止子继续转录,称为通读,这类引起抗终止作用的蛋白质称为抗终止因子。
终止子位于已转录的序列中,DNA的终止子可被RNA聚合酶本身或其辅助因子识别。
P366图20-6
1、 大肠杆菌中的两类终止子
P366图20-6
所有原核生物的终止子在终止点之前都有一个回文结构,它转录出来的RNA可以形成一个颈环式的发荚结构。
(1)、 不依赖于ρ的终止子(简单终止子)
简单终止子除具有发夹结构外,在终止点前有一寡聚U序列,回文对称区通常有一段富含GC的序列。
寡聚U序列可能提供信号使RNA聚合酶脱离模板。
(2)、 依赖ρ的终止子
依赖ρ的终止子,必需在ρ因子存在时,才发生终止作用。终止点前无寡聚U序列,回文对称区不富含GC。
ρ因子是55KD的蛋白质,可水解三磷酸核苷。
2、 抗终止作用
通读往往发生在强启动子、弱终止子的基因上。
抗终止作用常见于某些噬菌体的时序控制。早期基因于后基因之间以终止子相隔开,通过抗终止作用可以打开后基因的表达。
λ噬菌体前早期(immediate early)基因的产物N蛋白就是一种抗终止因子。它与RNA聚合酶作用使其在左右两个终止子处发生通读,从而表达晚早期(delayed early)基因。晚早期基因的产物Q蛋白也是一种抗终止因子,它能使晚早期基因得以表达。
五、 转录过程的调节控制
参阅P367转录过程的调节控制、P450基因表达的调节
基因的表达是受到严格的调节控制的,转录水平的调控是关键的环节,转录调控主要发生在起始和终止阶段。
时序调控:生长、发育、分化、时间程序。
适应调控:细胞内外环境改变。可位于基因的上游或下游区或内含子中。
操纵子:原核生物基因表达的协调单位,包括结构基因、调节基因及由调节基因产物所识别的控制序列(启动子、操纵基因)。
增强子:真核生物、病毒的基因组内,对转录起增强作用的一段DNA序列。它具有长距离效应,与方向无关,只作用于同一条DNA链上的启动子。
转录水平的调控取决于调节因子(RNA或蛋白质)与启动子、增强子、终止子之间的相互作用。
(一) 原核生物的转录调控
1、 操纵子模型
调节基因的产物可以是负调节物(如阻遏蛋白),也可以是正调节物,它们与操纵基因作用,关闭或打开结构基因的表达
2、 cAMP能促进许多原核生物的基因表达
cAMP可以活化环腺苷酸受体蛋白(cAMP receptor protein,CRP),CRP作为一种广谱性的正调节物,结合于被调控的启动子上,促进RNA聚合酶与启动子的结合,从而促进转录的进行。
葡萄糖效应:培养基中葡萄糖含量较高时,细菌首先利用葡萄糖,阻遏利用其它底物的酶类的合成。
原因:葡萄糖的降解物可以抑制腺苷酸环化酶的活力,并激活磷酸脂酶,因而降低cAMP的水平,使这些酶的基因不能转录。
因此,CRP又称降解物基因活化蛋白(catabolite gene activator protein,CAP)。受cAMP-CRP调节的操纵子(既代谢降解物敏感的操纵子)包括许多负责糖类分解代谢的诱导性启动子,如乳糖操纵子,半乳糖操纵子。,阿拉伯糖操纵子等,以及负责氨基酸合成代谢的可阻遏的操纵子,如Ile-Val操纵子(iLV)。
调节子:受一种一种调节蛋白所控制的几个操纵子系统,这些操纵子通常都属于同一个代谢途径或与同一种功能有关。
综合性调节子:一种调节蛋白控制几个不同代谢途径的操纵子,如cAMP-CRP对各种分解代谢和合成代谢的调控系统。
3、 衰减子的调控作用
(二) 真核生物的转录调控
第二节 RNA转录后的加工
RNA聚合酶合成的原初转录产物,要经过剪切、修饰、拼接等过程,才能转变成成熟的RNA分子,此过程称RNA转录后的加工。
(1)、 原核、真核的tRNA、rRNA(稳定的RNA)
细胞内的tRNA、rRNA相对稳定,半衰期一般为几个小时。所有的tRNA、rRNA都不是原初转录产物,都要经过一系列的加工才能成为有活性的分子。
a. 原初转录产物的5’是三磷酸(pppG、pppA),而成熟的tRNA、rRNA ,5’是单磷酸。
b. 成熟 tRNA、rRNA分子都比原初转录物小。
c. 所有的tRNA分子,都有原初转录物所没有的稀有碱基(A、G、C、U以外的碱基)。
(2)、 真核的mRNA
单顺反子,多内含子。寿命比原核mRNA的长。
内含子、内元(intron):在原初转录物中,通过RNA拼接反应而被去除的RNA序列,或基因中与这种序列对应的DNA序列。
外显子、外元(exon):原初转录物通过RNA拼接反应后,而保留于成熟RNA中的序列,或基因中与成熟RNA对应的DNA序列。
(3)、 原核mRNA
多顺反子,半衰期只有几分钟。这是原核生物重要的调控机制,如果一种酶或蛋白质不再需要时,只需简单地关闭其mRNA的合成就行了。
一、 原核生物RNA的加工
在原核生物中,rRNA基因与某些tRNA基因组成混合操纵子,可提高效率、节省空间(增加有效信息)。其它的tRNA基因也成簇存在,并与编码蛋白质的基因组成操纵子,它们在形式多顺反子转录物后,断裂成为rRNA和tRNA的前体,然后进一步加工成熟。
1、 原核rRNA前体的加工(E.coli)
P 370图20-7 E.coli rRNA前体的加工
E.coli共有三种rRNA
5S rRNA 120b
16S rRNA 1541b
23S rRNA 2904b
rRNA原初转录物含6300个核苷酸,约30S。
大肠杆菌有7个rRNA的转录单位(操纵子),它们分散在基因组的各处。每个转录单位由16SrRNA、23SrRNA、5SrRNSA以及一个或几个tRNA基因所组成。每个操纵子中tRNA基因的种类、数量和位置都各不相同。
RNAaseⅢ是一种rRNA、多顺反子mRNA加工的内切酶,识别特定的RNA双螺旋区。
RNAase E也可识别P5(5SrRNA前体)两端形成的双螺旋区。
2、 原核tRNA前体的加工
P371图20-8
E.coli染色体基因组有60个tRNA基因,即某种a.a.的tRNA基因不止一个拷贝。
tRNA基因大多成簇存在,或与rRNA基因,或与蛋白质基因组成混合转录单位。
tRNA前体加工步骤
a. 核酸内切酶(RNAaseP、RNAaseF)在tRNA两端切断。
b. 核酸外切酶(RNAaseD)从3’端逐个切去附加序列。
c. 在tRNA3’端加上-CCA-OH。tRNA核苷酰转移酶
d. 核苷的修饰(修饰酶):甲基化酶 / S-腺苷蛋氨酸(SAM),假尿苷合成酶。
(1)、 RNAase P
能识别空间结构,很干净地切除tRNA前体的5’端。
含有蛋白质和RNA(M1 RNA)两部分。M1 RNA含375nt,在某些条件下,(提高[Mg2+]、或加入胺类),RNAase P的RNA能单独地切断tRNA前体的5’端序列。
(2)、 RNAaseF
不干净地切除tRNA前体的3’端序列,需要RNAase D进一步修剪。
3、 原核mRNA前体的加工
由单顺反子构成mRNA,一般不需加工,一经转录,即可直接进行翻译。有些多顺反子构成的mRNA,须由核酸内切酶切成较小的mRNA,然后再进行翻译。
例:核糖体大亚基蛋白L10、L7、L12与RNA聚合酶β、β’亚基的基因组成混合操纵子。
它在转录出多顺反子mRNA后,由RNAaseⅢ将核糖体蛋白质基因与聚合酶亚基基因的mRNA切开,然后各自翻译。
该加工过程的意义:可对mRNA的翻译进行调节,核糖体蛋白质的合成必须适应于rRNA的合成水平,而细胞内RNA聚合酶的合成水平则要低得多。两者切开,有利于各自的翻译调控。
二、 真核生物RNA的加工
真核rRNA、tRNA前体的加工过程与原核的很相似,但mRNA的加工过程与原核的有很大不同。
1、 真核rRNA前体的加工
真核生物核糖体的小亚基含:16-18S rRNA,大亚基含:26-28S r RNA、5S rRNA、5.8S rRNA(特有)。
真核rRNA基因拷贝数较多,几十至几千个之间。
真核rRNA基因也成簇排列在一起,18S、5.8S、28S rRNA基因组成一个转录单位,彼此被间隔区分开,由RNA聚合酶I转录生成一个长的rRNA前体。5SrRNA基因也成簇排列,间隔区不被转录,由RNA聚合酶III转录后经适当加工。
哺乳动物:45SrRNA前体,含18S、5.8S、28S rRNA
果蝇:38SrRNA前体,含18S、5.8S、28S rRNA
酵母:37SrRNA 前体,17S、5.8S、26S rRNA
rRNA在成熟过程中可被甲基化,位点主要在核糖2’-OH上。真核rRNA甲基化程度比原核的高,约1-2%的核苷酸被甲基化。
真核生物的核仁是rRNA合成、加工和装配成核糖体的场所,大、小亚基分别组装后,通过核孔转移到胞质中参与核糖体循环。
2、 真核tRNA前体的加工
真核tRNA基因的数目比原核tRNA的要多的多。例如,E.coli有60个tRNA基因,啤酒酵母250个,果蝇850个,爪蟾1150个,人1300个。
真核tRNA基因也成簇排列,被间隔区分开,tRNA基因由RNA聚合酶Ⅲ转录。
真核tRNA前体的剪切、修饰过程与原核相似。
3、 真核生物mRNA前体的加工
mRNA原初转录物是分子量很大的前体,在核内加工过程中形成分子大小不等的中间产物,它们被称为核内不均一RNA(hn RNA)。其中,约有25%可转变成成熟的mRNA。
hnRNA半寿期很短,比细胞质中的mRNA更不稳定,一般在几分钟至1小时。而细胞质mRNA的半寿期为1-10小时,神经细胞mRNA最长可达数年。
hnRNA转变成mRNA的加工过程主要包括:
a. 5’末端形成帽子结构
b. 3’末端切断并加上polyA
c. 剪接除去内含子对应的序列
d. 甲基化
(1)、 5’末端加帽
反应步骤P 374
RNA三磷酸酶,mRNA鸟苷酰转移酶,mRNA(鸟嘌呤-7)甲基转移酶,mRNA(核苷-2’)甲基转移酶。
由于甲基化的程度不同,有三种类型的帽子:CAP O型,CAP I型,CAP II型。
★5’帽子也出现于hnRNA,说明加帽过程可能在转录的早期阶段或转录终止前就已完成。
★5’帽子的功能
a. 在翻译过程中起信号识别作用,协助核糖体与mRNA结合,使翻译从AUG开始。
b. 保护mRNA,避免5’端受核酸外切酶的降解。
(2)、 3’端加polyA
hnRNA链由RNAaseⅢ切断,由多聚腺苷酸聚合酶催化,加上polyA,ATP为供体。
加尾信号:AATAAA、YGTGTGYY(Y为嘧啶)。
高等真核生物和病毒的mRNA在靠近3’端区都有一段非常保守的序列AAUAAA,这一序列离多聚腺苷酸加入位点的距离在11-30nt范围之内。
核内hnRNA的3’端也有多聚腺苷酸,表明加尾过程早在核内已经完成。hnRNA中的poly(A)比mRNA略长,平均150-200nt。
polyA的功能
a. 防止核酸外切酶对mRNA信息序列的降解,起缓冲作用。
b. 与mRNA从细胞核转移到细胞质有关。
3’脱氧腺苷(既冬虫夏草素)是多聚腺苷酸化的特异抑制剂,但它不抑制hnRNA的转录。
(3)、 mRNA甲基化
某些真核mRNA内部有甲基化的位点,主要是在N6-甲基腺嘌呤(m6A)。
三、 RNA的拼接和催化作用(内含子的切除)
多数真核基因是断裂基因,其转录产物通过拼接,去除内含子,使编码区(外显子)成为连续序列。
有些内含子可以催化自身的拼接(self-splicing),有些内含子需要在有关酶的作用下才能拼接。
1、 tRNA前体的拼接
酵母tRNA约有400个基因,有内含子的基因约占1/10,内含子长度14-46bp,没有保守性。
切除内含子的酶识别的是tRNA的二级结构,而不是什么保守序列。
拼接过程:
第一步切除内含子,第二步RNA连接酶将两个tRNA半分子连接。
P375图20-9酵母tRNAPhe及其前体的结构
P376图20-10酵母和植物tRNA前体的拼接过程
2、 四膜虫rRNA前体的自我拼接
四膜虫35S rRNA前体,经加工可以生成5.8S 、17S和26SrRNA。
某些品系的四膜虫在其26SrRNA基因中有一个内含子,35S rRNA前体需要拼接除去内含子。该拼接过程只需一价和二价阳离子和鸟苷酸(提供3’-OH),无需能量和酶。
P377图20-11四膜虫rRNA的拼接
3、 mRNA前体的拼接
真核生物所有编码蛋白质的核结构基因,其内含子的左端均为GT,右端均为AG。此规律称GT-AG规律(对于mRNA就是GU-AG,此规律不适合于线粒体、叶绿体的内含子,也不适合于tRNA和某些rRNA的核结构基因)
酵母核基因的内含子在靠近3’端还有一个保守序列,与5’端序列互补,称为TACTAAC box,也与拼接有关。
真核细胞内存在许多种类的小分子RNA,大小在100-300nt,有些由聚合酶III转录,有些由聚合酶II转录。
核内小RNA(snRNA)主要存在于核内,细胞质小RNA(scRNA)主要存在于细胞质。
重要的snRNA有U系列snRNA,因其尿嘧啶含量高而得名。U系列snRNA通常都与多肽或蛋白质结合形成核糖核蛋白颗粒(RNP)。U-snRNA参与hnRNA的拼接过程。U3-snRNA与rRNA前体的加工有关,U1、U2、U4、U5、U6可能都与hnRNA的加工有关。
P378 图20-12 U1-snRNA的5’端序列与hnRNA内含子拼接处的序列互补
P379图20-13 hnRNA的拼接过程
真核生物编码蛋白质的核基因的内含子属于II类内含子(反式剪接)
四、 RNA的催化功能 P377
1、 I类内含子的自我剪接(顺式剪接)
I类内含子包括四膜虫rRNA的内含子,几种酵母线粒体的内含子,噬菌体T4胸苷酸合成酶的内含子等。这些内含子有较大的同源性,可自我拼接。
1981,Cech(美国),四膜虫rRNA前体(约6400nt)能自动切除413个nt的内含子,然后加工生成5.8S、17S、26S rRNA。
1984,Apirion(美国),噬菌体T4的RNA可以在没有蛋白质参与下自我断裂,由215nt前体链切下76nt 。
2、 独具催化活性的小分子RNA
1984,Altman,Pace(美国),细菌加工tRNA前体的酶—RNAase P中的M1RNA(375nt)在高浓度的Mg2+或胺类存在时能单独切下tRNA前体的5’端。
1,4-α葡聚糖分支酶中的RNA(31nt)也单独具有分支酶活力。
真核的U-snRNA催化rRNA前体、hnRNA前体的加工。
第三节 RNA的复制
有些RNA病毒,进入寄主细胞后,借助复制酶而进行RNA病毒的复制。
从感染RNA病毒的细胞中可以分离出RNA复制酶,这些RNA复制酶的模板特异性很强,只识别病毒自身的RNA,它以病毒RNA为模板,合成与模板性质相同的RNA。
一、 噬菌体QβRNA的复制
噬菌体Qβ:直径20nm,正十二面体,含30%RNA,其余为蛋白质,单链RNA,4500个核苷酸,编码3-4个蛋白质。
结构:5’端——成熟蛋白(A或A2蛋白)——外壳蛋白(或A1蛋白)——复制酶β亚基——3’端
Qβ复制酶:αβγδ四个亚基,只有β是自己编码,其余三个亚基来自寄主细胞。
P380 表20-4 Qβ复制酶亚基的性质和功能
进入E.coli细胞后,其RNA即为mRNA,可以直接合成与病毒繁殖有关的蛋白质(复制酶β亚基)。
QβRNA的复制过程:
P381 图20-14噬菌体QβRNA的复制过程:
在Qβ特异的复制酶合成并装备好后就开始病毒RNA的复制。
QβRNA翻译和复制的自我调节:
P381图20-15
QβRNA的高级结构(尤其是双螺旋区的结构)参与翻译的调节控制:
(1) 只有刚复制的QβRNA,成熟蛋白基因才能翻译。
(2) 核糖体能直接启动外壳蛋白基因的翻译
(3) 复制酶β亚基基因只有在外壳蛋白合成时双链打开才能进行翻译。
QβRNA的翻译、复制受寄主细胞调节,以正链RNA为模板复制负链RNA时,另需寄主细胞的HFⅠ和HFⅡ因子。而以负链RNA 为模板复制正链RNA时,不需这两个因子,感染后期大量合成的是正链RNA。
二、 病毒RNA复制的主要方式
1、 正链RNA病毒(mRNA):噬菌体Qβ、灰质炎病毒等。
进入寄主细胞后,利用寄主的翻译系统,首先合成复制酶及有关的蛋白质,然后进行病毒RNA的复制,最后由病毒RNA和蛋白质装配成病毒颗粒。
2、 负链RNA病毒(带有复制酶):狂犬病毒等
此类病毒带有复制酶,侵入后,复制酶首先合成出正链RNA(mRNA),再以正链RNA为模板,合成负链RNA及蛋白质,然后装配。
3、 双链RNA病毒(带有复制酶):呼肠孤病毒等
以双链RNA为模板,在复制酶作用下先转录正链RNA(mRNA),从而翻译出蛋白质,然后合成负链RNA,形成双链RNA,再包装。
4、 反转录病毒(含反转录酶):白血病病毒、肉瘤病毒等致癌RNA病毒
正链RNA病毒,它们的复制需要经过DNA前病毒阶段。
不同RNA病毒合成mRNA的途径可以分4类: P382 图20-16
第四节 RNA生物合成的抑制剂
某些核酸代谢的拮抗物和抗生素可抑制核苷酸或核酸的合成,因而可以用于抗病毒或抗肿瘤药物,也可以用于核酸的研究
一、 嘌呤和嘧啶类似物
抑制核苷酸的合成,还能掺入核酸分子中去,形成异常DNA、RNA,影响核酸功能。
主要有:6-巯基嘌呤、硫鸟嘌呤、2.6—二氨基嘌呤、8-氮鸟嘌呤、5-氟尿嘧啶 、6-氮尿嘧啶
碱基类似物进入体内后需转变成相应的核苷酸,才表现出抑制作用。
二、 DNA模板功能的抑制剂
此类化合物能与DNA结合,使DNA失去模板功能,从而抑制其复制与转录。
1、 烷化剂
氮芥(二(氯乙基)胺的衍生物)、磺酸酯、氮丙啶、乙撑亚胺类。它们带有活性烷基,使DNA烷基化。
烷化位点:鸟嘌呤N7 ,腺嘌呤N1、N3、N7,胞嘧啶N1
烷基化后,碱基易被水解下来,留下的空隙可干扰DNA复制或引起错误碱基掺入。带有双功能基团的烷化剂,可同时与DNA两条链结合,使双链DNA交联,从而失去模板功能。
环磷酰胺:肿瘤细胞中磷酰胺酶活化,生成活性氮芥。
苯丁酸氮芥:癌细胞酵解作用强,乳酸多,pH低,苯丁酸氮芥易进入。
2、 放线菌素D(对真核、原核细胞都起作用)
有抗菌和抗癌作用。
它可与DNA形成非共价复合物,使其多肽部分在DNA的“浅沟”上如同阻遏蛋白一样,抑制DNA的转录和复制。
此类机理的放线菌素还有色霉素A3、橄榄霉素、光神霉素。
3、 嵌入染料
扁平芳香族染料,可插入双链DNA相邻碱基对之间。
溴化乙锭插入后,使DNA在复制时缺失或增添一个核苷酸,从而导致移码突变,并能抑制RNA链的起始及质粒的复制。此外还有原黄素、吖啶黄、吖啶橙等。
三、 RNA聚合酶的抑制物
1、 利福霉素
包括其衍生物利福平,特异地抑制细菌RNA聚合酶的活性。
强烈抑制革兰氏阳性菌和结核杆菌,它主要抑制RNA合成的起始。
2、 利链菌素
与细菌RNA聚合酶β亚基结合,抑制转录过程中链的延长。
3、 α-鹅膏蕈碱
主要抑制真核RNA聚合酶Ⅱ和Ⅲ,对细菌的RNA聚合酶作用极小。
它在转录出多顺反子mRNA后,由RNAaseⅢ将核糖体蛋白质基因与聚合酶亚基基因的mRNA切开,然后各自翻译。
该加工过程的意义:可对mRNA的翻译进行调节,核糖体蛋白质的合成必须适应于rRNA的合成水平,而细胞内RNA聚合酶的合成水平则要低得多。两者切开,有利于各自的翻译调控。
二、 真核生物RNA的加工
真核rRNA、tRNA前体的加工过程与原核的很相似,但mRNA的加工过程与原核的有很大不同。
1、 真核rRNA前体的加工
真核生物核糖体的小亚基含:16-18S rRNA,大亚基含:26-28S r RNA、5S rRNA、5.8S rRNA(特有)。
真核rRNA基因拷贝数较多,几十至几千个之间。
真核rRNA基因也成簇排列在一起,18S、5.8S、28S rRNA基因组成一个转录单位,彼此被间隔区分开,由RNA聚合酶I转录生成一个长的rRNA前体。5SrRNA基因也成簇排列,间隔区不被转录,由RNA聚合酶III转录后经适当加工。
哺乳动物:45SrRNA前体,含18S、5.8S、28S rRNA
果蝇:38SrRNA前体,含18S、5.8S、28S rRNA
酵母:37SrRNA 前体,17S、5.8S、26S rRNA
rRNA在成熟过程中可被甲基化,位点主要在核糖2’-OH上。真核rRNA甲基化程度比原核的高,约1-2%的核苷酸被甲基化。
真核生物的核仁是rRNA合成、加工和装配成核糖体的场所,大、小亚基分别组装后,通过核孔转移到胞质中参与核糖体循环。
2、 真核tRNA前体的加工
真核tRNA基因的数目比原核tRNA的要多的多。例如,E.coli有60个tRNA基因,啤酒酵母250个,果蝇850个,爪蟾1150个,人1300个。
真核tRNA基因也成簇排列,被间隔区分开,tRNA基因由RNA聚合酶Ⅲ转录。
真核tRNA前体的剪切、修饰过程与原核相似。
3、 真核生物mRNA前体的加工
mRNA原初转录物是分子量很大的前体,在核内加工过程中形成分子大小不等的中间产物,它们被称为核内不均一RNA(hn RNA)。其中,约有25%可转变成成熟的mRNA。
hnRNA半寿期很短,比细胞质中的mRNA更不稳定,一般在几分钟至1小时。而细胞质mRNA的半寿期为1-10小时,神经细胞mRNA最长可达数年。
hnRNA转变成mRNA的加工过程主要包括:
a. 5’末端形成帽子结构
b. 3’末端切断并加上polyA
c. 剪接除去内含子对应的序列
d. 甲基化
(1)、 5’末端加帽
反应步骤P 374
RNA三磷酸酶,mRNA鸟苷酰转移酶,mRNA(鸟嘌呤-7)甲基转移酶,mRNA(核苷-2’)甲基转移酶。
由于甲基化的程度不同,有三种类型的帽子:CAP O型,CAP I型,CAP II型。
★5’帽子也出现于hnRNA,说明加帽过程可能在转录的早期阶段或转录终止前就已完成。
★5’帽子的功能
a. 在翻译过程中起信号识别作用,协助核糖体与mRNA结合,使翻译从AUG开始。
b. 保护mRNA,避免5’端受核酸外切酶的降解。
(2)、 3’端加polyA
hnRNA链由RNAaseⅢ切断,由多聚腺苷酸聚合酶催化,加上polyA,ATP为供体。
加尾信号:AATAAA、YGTGTGYY(Y为嘧啶)。
高等真核生物和病毒的mRNA在靠近3’端区都有一段非常保守的序列AAUAAA,这一序列离多聚腺苷酸加入位点的距离在11-30nt范围之内。
核内hnRNA的3’端也有多聚腺苷酸,表明加尾过程早在核内已经完成。hnRNA中的poly(A)比mRNA略长,平均150-200nt。
polyA的功能
a. 防止核酸外切酶对mRNA信息序列的降解,起缓冲作用。
b. 与mRNA从细胞核转移到细胞质有关。
3’脱氧腺苷(既冬虫夏草素)是多聚腺苷酸化的特异抑制剂,但它不抑制hnRNA的转录。
(3)、 mRNA甲基化
某些真核mRNA内部有甲基化的位点,主要是在N6-甲基腺嘌呤(m6A)。
三、 RNA的拼接和催化作用(内含子的切除)
多数真核基因是断裂基因,其转录产物通过拼接,去除内含子,使编码区(外显子)成为连续序列。
有些内含子可以催化自身的拼接(self-splicing),有些内含子需要在有关酶的作用下才能拼接。
1、 tRNA前体的拼接
酵母tRNA约有400个基因,有内含子的基因约占1/10,内含子长度14-46bp,没有保守性。
切除内含子的酶识别的是tRNA的二级结构,而不是什么保守序列。
拼接过程:
第一步切除内含子,第二步RNA连接酶将两个tRNA半分子连接。
P375图20-9酵母tRNAPhe及其前体的结构
P376图20-10酵母和植物tRNA前体的拼接过程
2、 四膜虫rRNA前体的自我拼接
四膜虫35S rRNA前体,经加工可以生成5.8S 、17S和26SrRNA。
某些品系的四膜虫在其26SrRNA基因中有一个内含子,35S rRNA前体需要拼接除去内含子。该拼接过程只需一价和二价阳离子和鸟苷酸(提供3’-OH),无需能量和酶。
P377图20-11四膜虫rRNA的拼接
3、 mRNA前体的拼接
真核生物所有编码蛋白质的核结构基因,其内含子的左端均为GT,右端均为AG。此规律称GT-AG规律(对于mRNA就是GU-AG,此规律不适合于线粒体、叶绿体的内含子,也不适合于tRNA和某些rRNA的核结构基因)
酵母核基因的内含子在靠近3’端还有一个保守序列,与5’端序列互补,称为TACTAAC box,也与拼接有关。
真核细胞内存在许多种类的小分子RNA,大小在100-300nt,有些由聚合酶III转录,有些由聚合酶II转录。
核内小RNA(snRNA)主要存在于核内,细胞质小RNA(scRNA)主要存在于细胞质。
重要的snRNA有U系列snRNA,因其尿嘧啶含量高而得名。U系列snRNA通常都与多肽或蛋白质结合形成核糖核蛋白颗粒(RNP)。U-snRNA参与hnRNA的拼接过程。U3-snRNA与rRNA前体的加工有关,U1、U2、U4、U5、U6可能都与hnRNA的加工有关。
P378 图20-12 U1-snRNA的5’端序列与hnRNA内含子拼接处的序列互补
P379图20-13 hnRNA的拼接过程
真核生物编码蛋白质的核基因的内含子属于II类内含子(反式剪接)
四、 RNA的催化功能 P377
1、 I类内含子的自我剪接(顺式剪接)
I类内含子包括四膜虫rRNA的内含子,几种酵母线粒体的内含子,噬菌体T4胸苷酸合成酶的内含子等。这些内含子有较大的同源性,可自我拼接。
1981,Cech(美国),四膜虫rRNA前体(约6400nt)能自动切除413个nt的内含子,然后加工生成5.8S、17S、26S rRNA。
1984,Apirion(美国),噬菌体T4的RNA可以在没有蛋白质参与下自我断裂,由215nt前体链切下76nt 。
2、 独具催化活性的小分子RNA
1984,Altman,Pace(美国),细菌加工tRNA前体的酶—RNAase P中的M1RNA(375nt)在高浓度的Mg2+或胺类存在时能单独切下tRNA前体的5’端。
1,4-α葡聚糖分支酶中的RNA(31nt)也单独具有分支酶活力。
真核的U-snRNA催化rRNA前体、hnRNA前体的加工。
第三节 RNA的复制
有些RNA病毒,进入寄主细胞后,借助复制酶而进行RNA病毒的复制。
从感染RNA病毒的细胞中可以分离出RNA复制酶,这些RNA复制酶的模板特异性很强,只识别病毒自身的RNA,它以病毒RNA为模板,合成与模板性质相同的RNA。
一、 噬菌体QβRNA的复制
噬菌体Qβ:直径20nm,正十二面体,含30%RNA,其余为蛋白质,单链RNA,4500个核苷酸,编码3-4个蛋白质。
结构:5’端——成熟蛋白(A或A2蛋白)——外壳蛋白(或A1蛋白)——复制酶β亚基——3’端
Qβ复制酶:αβγδ四个亚基,只有β是自己编码,其余三个亚基来自寄主细胞。
P380 表20-4 Qβ复制酶亚基的性质和功能
进入E.coli细胞后,其RNA即为mRNA,可以直接合成与病毒繁殖有关的蛋白质(复制酶β亚基)。
QβRNA的复制过程:
P381 图20-14噬菌体QβRNA的复制过程:
在Qβ特异的复制酶合成并装备好后就开始病毒RNA的复制。
QβRNA翻译和复制的自我调节:
P381图20-15
QβRNA的高级结构(尤其是双螺旋区的结构)参与翻译的调节控制:
(1) 只有刚复制的QβRNA,成熟蛋白基因才能翻译。
(2) 核糖体能直接启动外壳蛋白基因的翻译
(3) 复制酶β亚基基因只有在外壳蛋白合成时双链打开才能进行翻译。
QβRNA的翻译、复制受寄主细胞调节,以正链RNA为模板复制负链RNA时,另需寄主细胞的HFⅠ和HFⅡ因子。而以负链RNA 为模板复制正链RNA时,不需这两个因子,感染后期大量合成的是正链RNA。
二、 病毒RNA复制的主要方式
1、 正链RNA病毒(mRNA):噬菌体Qβ、灰质炎病毒等。
进入寄主细胞后,利用寄主的翻译系统,首先合成复制酶及有关的蛋白质,然后进行病毒RNA的复制,最后由病毒RNA和蛋白质装配成病毒颗粒。
2、 负链RNA病毒(带有复制酶):狂犬病毒等
此类病毒带有复制酶,侵入后,复制酶首先合成出正链RNA(mRNA),再以正链RNA为模板,合成负链RNA及蛋白质,然后装配。
3、 双链RNA病毒(带有复制酶):呼肠孤病毒等
以双链RNA为模板,在复制酶作用下先转录正链RNA(mRNA),从而翻译出蛋白质,然后合成负链RNA,形成双链RNA,再包装。
4、 反转录病毒(含反转录酶):白血病病毒、肉瘤病毒等致癌RNA病毒
正链RNA病毒,它们的复制需要经过DNA前病毒阶段。
不同RNA病毒合成mRNA的途径可以分4类: P382 图20-16
第四节 RNA生物合成的抑制剂
某些核酸代谢的拮抗物和抗生素可抑制核苷酸或核酸的合成,因而可以用于抗病毒或抗肿瘤药物,也可以用于核酸的研究
一、 嘌呤和嘧啶类似物
抑制核苷酸的合成,还能掺入核酸分子中去,形成异常DNA、RNA,影响核酸功能。
主要有:6-巯基嘌呤、硫鸟嘌呤、2.6—二氨基嘌呤、8-氮鸟嘌呤、5-氟尿嘧啶 、6-氮尿嘧啶
碱基类似物进入体内后需转变成相应的核苷酸,才表现出抑制作用。
二、 DNA模板功能的抑制剂
此类化合物能与DNA结合,使DNA失去模板功能,从而抑制其复制与转录。
1、 烷化剂
氮芥(二(氯乙基)胺的衍生物)、磺酸酯、氮丙啶、乙撑亚胺类。它们带有活性烷基,使DNA烷基化。
烷化位点:鸟嘌呤N7 ,腺嘌呤N1、N3、N7,胞嘧啶N1
烷基化后,碱基易被水解下来,留下的空隙可干扰DNA复制或引起错误碱基掺入。带有双功能基团的烷化剂,可同时与DNA两条链结合,使双链DNA交联,从而失去模板功能。
环磷酰胺:肿瘤细胞中磷酰胺酶活化,生成活性氮芥。
苯丁酸氮芥:癌细胞酵解作用强,乳酸多,pH低,苯丁酸氮芥易进入。
2、 放线菌素D(对真核、原核细胞都起作用)
有抗菌和抗癌作用。
它可与DNA形成非共价复合物,使其多肽部分在DNA的“浅沟”上如同阻遏蛋白一样,抑制DNA的转录和复制。
此类机理的放线菌素还有色霉素A3、橄榄霉素、光神霉素。
3、 嵌入染料
扁平芳香族染料,可插入双链DNA相邻碱基对之间。
溴化乙锭插入后,使DNA在复制时缺失或增添一个核苷酸,从而导致移码突变,并能抑制RNA链的起始及质粒的复制。此外还有原黄素、吖啶黄、吖啶橙等。
三、 RNA聚合酶的抑制物
1、 利福霉素
包括其衍生物利福平,特异地抑制细菌RNA聚合酶的活性。
强烈抑制革兰氏阳性菌和结核杆菌,它主要抑制RNA合成的起始。
2、 利链菌素
与细菌RNA聚合酶β亚基结合,抑制转录过程中链的延长。
3、 α-鹅膏蕈碱
主要抑制真核RNA聚合酶Ⅱ和Ⅲ,对细菌的RNA聚合酶作用极小。