量子力学笔记六



文件信息
文件来源  
文件作者  
更新时间 2005-5-8 10:22:17 
添加编辑 viewsnake 

辅助信息
打印功能 打印本文
背景颜色 杏黄 秋褐 胭红 芥绿 天蓝 雪青 炭灰 奶白
字体大小 特大号字 大号字 中号字 小号字
免责声明 本网站所有文章均来自网络,仅提供预览形式,不提供纸张形式,若涉及到版权的文章,请购买正版,毕竟在电脑上看也不舒服啊,呵呵,这是viewsnake个人网站,纯粹交流学习资料的地方。无商业行为。
选择更多免费考研资料:
阅读正文内容
 

上次说到,普朗克在研究黑体的时候,偶尔发现了一个普适公式,但是,他却不知道这个公式背后的物理意义。

为了能够解释他的新公式,普朗克已经决定抛却他心中的一切传统成见。他反复地咀嚼新公式的含义,体会它和原来那两个公式的联系以及不同。我们已经看到了,如果从玻尔兹曼运动粒子的角度来推导辐射定律,就得到维恩的形式,要是从纯麦克斯韦电磁辐射的角度来推导,就得到瑞利-金斯的形式。那么,新的公式,它究竟是建立在粒子的角度上,还是建立在波的角度上呢?

作为一个传统的保守的物理学家,普朗克总是尽可能试图在理论内部解决问题,而不是颠覆这个理论以求得突破。更何况,他面对的还是有史以来最伟大的麦克斯韦电磁理论。但是,在种种尝试都失败了以后,普朗克发现,他必须接受他一直不喜欢的统计力学立场,从玻尔兹曼的角度来看问题,把熵和几率引入到这个系统里来。

那段日子,是普朗克一生中最忙碌,却又最光辉的日子。20年后,1920年,他在诺贝尔得奖演说中这样回忆道:

“……经过一生中最紧张的几个礼拜的工作,我终于看见了黎明的曙光。一个完全意想不到的景象在我面前呈现出来。”(…until after some weeks of the most intense work of my life clearness began to dawn upon me, and an unexpected view revealed itself in the distance)

什么是“完全意想不到的景象”呢?原来普朗克发现,仅仅引入分子运动理论还是不够的,在处理熵和几率的关系时,如果要使得我们的新方程成立,就必须做一个假定,假设能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。

为了引起各位听众足够的注意力,我想我应该把上面这段话重复再写一遍。事实上我很想用初号的黑体字来写这段话,但可惜论坛不给我这个功能。

“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”

在了解它的具体意义之前,不妨先了解一个事实:正是这个假定,推翻了自牛顿以来200多年,曾经被认为是坚固不可摧毁的经典世界。这个假定以及它所衍生出的意义,彻底改变了自古以来人们对世界的最根本的认识。极盛一时的帝国,在这句话面前轰然土崩瓦解,倒坍之快之彻底,就像爱伦&#8226\;坡笔下厄舍家那间不祥的庄园。

好,回到我们的故事中来。能量不是连续不断的,这有什么了不起呢?

很了不起。因为它和有史以来一切物理学家的观念截然相反(可能某些伪科学家除外,呵呵)。自从伽利略和牛顿用数学规则驯服了大自然之后,一切自然的过程就都被当成是连续不间断的。如果你的中学物理老师告诉你,一辆小车沿直线从A点行驶到B点,却不经过两点中间的C点,你一定会觉得不可思议,甚至开始怀疑该教师是不是和校长有什么裙带关系。自然的连续性是如此地不容置疑,以致几乎很少有人会去怀疑这一点。当预报说气温将从20度上升到30度,你会毫不犹豫地判定,在这个过程中间气温将在某个时刻到达25度,到达28度,到达29又1/2度,到达29又3/4度,到达29又9/10度……总之,一切在20度到30度之间的值,无论有理的还是无理的,只要它在那段区间内,气温肯定会在某个时刻,精确地等于那个值。

对于能量来说,也是这样。当我们说,这个化学反应总共释放出了100焦耳的能量的时候,我们每个人都会潜意识地推断出,在反应期间,曾经有某个时刻,总体系释放的能量等于50焦耳,等于32.233焦耳,等于3.14159……焦耳。总之,能量的释放是连续的,它总可以在某个时刻达到范围内的任何可能的值。这个观念是如此直接地植入我们的内心深处,显得天经地义一般。

这种连续性,平滑性的假设,是微积分的根本基础。牛顿、麦克斯韦那庞大的体系,便建筑在这个地基之上,度过了百年的风雨。当物理遇到困难的时候,人们纵有怀疑的目光,也最多盯着那巍巍大厦,追问它是不是在建筑结构上有问题,却从未有丝毫怀疑它脚下的土地是否坚实。而现在,普朗克的假设引发了一场大地震,物理学所赖以建立的根本基础开始动摇了。

普朗克的方程倔强地要求,能量必须只有有限个可能态,它不能是无限连续的。在发射的时候,它必须分成有限的一份份,必须有个最小的单位。这就像一个吝啬鬼无比心痛地付帐,虽然他尽可能地试图一次少付点钱,但无论如何,他每次最少也得付上1个penny,因为没有比这个更加小的单位了。这个付钱的过程,就是一个不连续的过程。我们无法找到任何时刻,使得付帐者正好处于付了1.00001元这个状态,因为最小的单位就是0.01元,付的帐只能这样“一份一份”地发出。我们可以找到他付了1元的时候,也可以找到他付了1.01元的时候,但在这两个状态中间,不存在别的状态,虽然从理论上说,1元和1.01元之间,还存在着无限多个数字。

普朗克发现,能量的传输也必须遵照这种货币式的方法,一次至少要传输一个确定的量,而不可以无限地细分下去。能量的传输,也必须有一个最小的基本单位。能量只能以这个单位为基础一份份地发出,而不能出现半个单位或者四分之一单位这种情况。在两个单位之间,是能量的禁区,我们永远也不会发现,能量的计量会出现小数点以后的数字。

1900年12月14日,人们还在忙活着准备欢度圣诞节。这一天,普朗克在德国物理学会上发表了他的大胆假设。他宣读了那篇名留青史的《黑体光谱中的能量分布》的论文,其中改变历史的是这段话:

为了找出N个振子具有总能量Un的可能性,我们必须假设Un是不可连续分割的,它只能是一些相同部件的有限总和……
(die Wahrscheinlichkeit zu finden, dass die N Resonatoren ingesamt Schwingungsenergie Un besitzen, Un nicht als eine unbeschr&auml\;nkt teilbare, sondern al seine ganzen Zahl von endlichen gleichen Teilen aufzufassen…)

这个基本部件,普朗克把它称作“能量子”(Energieelement),但随后很快,在另一篇论文里,他就改称为“量子”(Elementarquantum),英语就是quantum。这个字来自拉丁文quantus,本来的意思就是“多少”,“量”。量子就是能量的最小单位,就是能量里的一美分。一切能量的传输,都只能以这个量为单位来进行,它可以传输一个量子,两个量子,任意整数个量子,但却不能传输1又1/2个量子,那个状态是不允许的,就像你不能用现钱支付1又1/2美分一样。

那么,这个最小单位究竟是多少呢?从普朗克的方程里可以容易地推算出这个常数的大小,它约等于6.55×10^-27尔格*秒,换算成焦耳,就是6.626×10^-34焦耳*秒。这个单位相当地小,也就是说量子非常地小,非常精细。因此由它们组成的能量自然也十分“细密”,以至于我们通常看起来,它就好像是连续的一样。这个值,现在已经成为了自然科学中最为重要的常数之一,以它的发现者命名,称为“普朗克常数”,用h来表示。

请记住1900年12月14日这个日子,这一天就是量子力学的诞辰。量子的幽灵从普朗克的方程中脱胎出来,开始在欧洲上空游荡。几年以后,它将爆发出令人咋舌的力量,把一切旧的体系彻底打破,并与联合起来的保守派们进行一场惊天动地的决斗。我们将在以后的章节里看到,这个幽灵是如此地具有革命性和毁坏性,以致于它所过之处,最富丽堂皇的宫殿都在瞬间变成了断瓦残垣。物理学构筑起来的精密体系被毫不留情地砸成废铁,千百年来亘古不变的公理被扔进垃圾箱中不得翻身。它所带来的震撼力和冲击力是如此地大,以致于后来它的那些伟大的开创者们都惊吓不已,纷纷站到了它的对立面。当然,它也决不仅仅是一个破坏者,它更是一个前所未有的建设者,科学史上最杰出的天才们参予了它成长中的每一步,赋予了它华丽的性格和无可比拟的力量。人类理性最伟大的构建终将在它的手中诞生。

一场前所未有的革命已经到来,一场最为反叛和彻底的革命,也是最具有传奇和史诗色彩的革命。暴风雨的种子已经在乌云的中心酿成,只等适合的时候,便要催动起史无前例的雷电和风暴,向世人昭示它的存在。而这一切,都是从那个叫做马克斯&#8226\;普朗克的男人那里开始的。

*********
饭后闲话:连续性和悖论

古希腊有个学派叫做爱利亚派,其创建人名叫巴门尼德(Parmenides)。这位哲人对运动充满了好奇,但在他看来,运动是一种自相矛盾的行为,它不可能是真实的,而一定是一个假相。为什么呢?因为巴门尼德认为世界上只有一个唯一的“存在”,既然是唯一的存在,它就不可能有运动。因为除了“存在”就是“非存在”,“存在”怎么可能移动到“非存在”里面去呢?所以他认为“存在”是绝对静止的,而运动是荒谬的,我们所理解的运动只是假相而已。

巴门尼德有个学生,就是大名鼎鼎的芝诺(Zeno)。他为了为他的老师辩护,证明运动是不可能的,编了好几个著名的悖论来说明运动的荒谬性。我们在这里谈谈最有名的一个,也就是“阿喀琉斯追龟辩”,这里面便牵涉到时间和空间的连续性问题。

阿喀琉斯是史诗《伊利亚特》里的希腊大英雄。有一天他碰到一只乌龟,乌龟嘲笑他说:“别人都说你厉害,但我看你如果跟我赛跑,还追不上我。”

阿喀琉斯大笑说:“这怎么可能。我就算跑得再慢,速度也有你的10倍,哪会追不上你?”

乌龟说:“好,那我们假设一下。你离我有100米,你的速度是我的10倍。现在你来追我了,但当你跑到我现在这个位置,也就是跑了100米的时候,我也已经又向前跑了10米。当你再追到这个位置的时候,我又向前跑了1米,你再追1米,我又跑了1/10米……总之,你只能无限地接近我,但你永远也不能追上我。”

阿喀琉斯怎么听怎么有道理,一时丈二和尚摸不着头脑。

这个故事便是有着世界性声名的“芝诺悖论”(之一),哲学家们曾经从各种角度多方面地阐述过这个命题。这个命题令人困扰的地方,就在于它采用了一种无限分割空间的办法,使得我们无法跳过这个无限去谈问题。虽然从数学上,我们可以知道无限次相加可以限制在有限的值里面,但是数学从本质上只能告诉我们怎么做,而不能告诉我们能不能做到。

但是,自从量子革命以来,学者们越来越多地认识到,空间不一定能够这样无限分割下去。量子效应使得空间和时间的连续性丧失了,芝诺所连续无限次分割的假设并不能够成立。这样一来,芝诺悖论便不攻自破了。量子论告诉我们,“无限分割”的概念是一种数学上的理想,而不可能在现实中实现。一切都是不连续的,连续性的美好蓝图,其实不过是我们的一种想象。

第二章 乌云

我们的故事说到这里,如果给大家留下这么一个印象,就是量子论天生有着救世主的气质,它一出世就像闪电划破夜空,引起众人的惊叹及欢呼,并摧枯拉朽般地打破旧世界的体系。如果是这样的话,那么笔者表示抱歉,因为事实远远并非如此。

我们再回过头来看看物理史上的伟大理论:牛顿的体系闪耀着神圣不可侵犯的光辉,从诞生的那刻起便有着一种天上地下唯我独尊的气魄。麦克斯韦的方程组简洁深刻,倾倒众生,被誉为上帝谱写的诗歌。爱因斯坦的相对论虽然是平民出身,但骨子却继承着经典体系的贵族优雅气质,它的光芒稍经发掘后便立即照亮了整个时代。这些理论,它们的成功都是近乎压倒性的,天命所归,不可抗拒。而伟人们的个人天才和魅力,则更加为其抹上了高贵而骄傲的色彩。但量子论却不同,量子论的成长史,更像是一部艰难的探索史,其中的每一步,都充满了陷阱、荆棘和迷雾。量子的诞生伴随着巨大的阵痛,它的命运注定了将要起伏而多舛。量子论的思想是如此反叛和躁动,以至于它与生俱来地有着一种对抗权贵的平民风格;而它显示出来的潜在力量又是如此地巨大而近乎无法控制,这一切都使得所有的人都对它怀有深深的惧意。

而在这些怀有戒心的人们中间,最有讽刺意味的就要算量子的创始人:普朗克自己了。作为一个老派的传统物理学家,普朗克的思想是保守的。虽然在那个决定命运的1900年,他鼓起了最大的勇气做出了量子的革命性假设,但随后他便为这个离经叛道的思想而深深困扰。在黑体问题上,普朗克孤注一掷想要得到一个积极的结果,但最后导出的能量不连续性的图象却使得他大为吃惊和犹豫,变得畏缩不前起来。

如果能量是量子化的,那么麦克斯韦的理论便首当其冲站在应当受置疑的地位,这在普朗克看来是不可思议,不可想象的。事实上,普朗克从来不把这当做一个问题,在他看来,量子的假设并不是一个物理真实,而纯粹是一个为了方便而引入的假设而已。普朗克压根也没有想到,自己的理论在历史上将会有着多么大的意义,当后来的一系列事件把这个意义逐渐揭露给他看时,他简直都不敢相信自己的眼睛,并为此惶恐不安。有人戏称,普朗克就像是童话里的那个渔夫,他亲手把魔鬼从封印的瓶子里放了出来,自己却反而被这个魔鬼吓了个半死。

有十几年的时间,量子被自己的创造者所抛弃,不得不流浪四方。普朗克不断地告诫人们,在引用普朗克常数h的时候,要尽量小心谨慎,不到万不得已千万不要胡思乱想。这个思想,一直要到1915年,当玻尔的模型取得了空前的成功后,才在普朗克的脑海中扭转过来。量子论就像神话中的英雄海格力斯(Hercules),一出生就被抛弃在荒野里,命运更为他安排了重重枷锁。他的所有荣耀,都要靠自己那非凡的力量和一系列艰难的斗争来争取。作为普朗克本人来说,他从一个革命的创始者而最终走到了时代的反面,没能在这段振奋人心的历史中起到更多的积极作用,这无疑是十分遗憾的。在他去世前出版的《科学自传》中,普朗克曾回忆过他那企图调和量子与经典理论的徒劳努力,并承认量子的意义要比那时他所能想象的重要得多。

不过,我们并不能因此而否认普朗克在量子论所做出的伟大而决定性的贡献。有一些观点可能会认为普朗克只是凭借了一个巧合般地猜测,一种胡乱的拼凑,一个纯粹的运气才发现了他的黑体方程,进而假设了量子的理论。他只是一个幸运儿,碰巧猜到了那个正确的答案而已。而这个答案究竟意味着什么,这个答案的内在价值却不是他能够回答和挖掘的。但是,几乎所有的关于普朗克的传记和研究都会告诉我们,虽然普朗克的公式在很大程度上是经验主义的,但是一切证据都表明,他已经充分地对这个答案做好了准备。1900年,普朗克在黑体研究方面已经浸淫了6年,做好了理论上突破的一切准备工作。其实在当时,他自己已经很清楚,经典的电磁理论已经无法解释实验结果,必须引入热力学解释。而这样一来,辐射能量的不连续性已经是一个不可避免的结果。这个概念其实早已在他的脑海中成形,虽然可能普朗克本人没有清楚地意识到这一点,或者不肯承认这一点,但这个思想在他的潜意识中其实已经相当成熟,呼之欲出了。正因为如此,他才能在导出方程后的短短时间里,以最敏锐的直觉指出蕴含在其中的那个无价的假设。普朗克以一种那个时代非常难得的开创性态度来对待黑体的难题,他为后来的人打开了一扇通往全新未知世界的大门。无论从哪个角度来看,这样的伟大工作,其意义都是不能低估的。

而普朗克的保守态度也并不是偶然的。实在是量子的思想太惊人,太过于革命。从量子论的成长历史来看,有着这样一个怪圈:科学巨人们参予了推动它的工作,却终于因为不能接受它惊世骇俗的解释而纷纷站到了保守的一方去。在这个名单上,除了普朗克,更有闪闪发光的瑞利、汤姆逊、爱因斯坦、德布罗意,乃至薛定谔。这些不仅是物理史上最伟大的名字,好多更是量子论本身的开创者和关键人物。量子就在同它自身创建者的斗争中成长起来,每一步都迈得艰难而痛苦不堪。我们会在以后的章节中,详细地去观察这些激烈的思想冲击和观念碰撞。不过,正是这样的磨砺,才使得一部量子史话显得如此波澜壮阔,激动人心,也使得量子论本身更加显出它的不朽光辉来。量子论不像牛顿力学或者爱因斯坦相对论,它的身上没有天才的个人标签,相反,整整一代精英共同促成了它的光荣。

作为老派科学家的代表,普朗克的科学精神和人格力量无疑是可敬的。在纳粹统治期间,正是普朗克的努力,才使得许多犹太裔的科学家得到保护,得以继续工作。但是,量子论这个精灵蹦跳在时代的最前缘,它需要最有锐气的头脑和最富有创见的思想来激活它的灵气。20世纪初,物理的天空中已是黑云压城,每一升空气似乎都在激烈地对流和振荡。一个伟大的时代需要伟大的人物,有史以来最出色和最富激情的一代物理学家便在这乱世的前夕成长起来。

1900年12月14日,普朗克在柏林宣读了他关于黑体辐射的论文,宣告了量子的诞生。那一年他42岁。

就在那一年,一个名叫阿尔伯特&#8226\;爱因斯坦(Albert Einstein)的青年从苏黎世联邦工业大学(ETH)毕业,正在为将来的生活发愁。他在大学里旷了无穷多的课,以致他的教授闵可夫斯基(Minkowski)愤愤地骂他是“懒狗”。没有一个人肯留他在校做理论或者实验方面的工作,一个失业的黯淡前途正等待着这位不修边幅的年轻人。

在丹麦,15岁的尼尔斯&#8226\;玻尔(Niels Bohr)正在哥本哈根的中学里读书。玻尔有着好动的性格,每次打架或争论,总是少不了他。学习方面,他在数学和科学方面显示出了非凡的天才,但是他的笨拙的口齿和惨不忍睹的作文却是全校有名的笑柄。特别是作文最后的总结(conclusion),往往使得玻尔头痛半天,在他看来,这种总结是无意义的重复而已。有一次他写一篇关于金属的论文,最后总结道:In conclusion, I would like to mention uranium(总而言之,我想说的是铀)。

埃尔文&#8226\;薛定谔(Erwin Schrodinger)比玻尔小两岁,当时在维也纳的一间著名的高级中学Akademisches Gymnasium上学。这间中学也是物理前辈玻尔兹曼,著名剧作家施尼茨勒(Arthur Schnitzler)和齐威格(Stefanie Zweig)的母校。对于刚入校的学生来说,拉丁文是最重要的功课,每周要占8个小时,而数学和物理只用3个小时。不过对薛定谔来说一切都是小菜一碟,他热爱古文、戏剧和历史,每次在班上都是第一。小埃尔文长得非常帅气,穿上礼服和紧身裤,俨然一个翩翩小公子,这也使得他非常受到欢迎。

马克斯&#8226\;波恩(Max Born)和薛定谔有着相似的教育背景,经过了家庭教育,高级中学的过程进入了布雷斯劳大学(这也是当时德国和奥地利中上层家庭的普遍做法)。不过相比薛定谔来说,波恩并不怎么喜欢拉丁文,甚至不怎么喜欢代数,尽管他对数学的看法后来在大学里得到了改变。他那时疯狂地喜欢上了天文,梦想着将来成为一个天文学家。

路易斯&#8226\;德布罗意(Louis de Broglie)当时8岁,正在他那显赫的贵族家庭里接受良好的幼年教育。他对历史表现出浓厚的兴趣,并乐意把自己的时间花在这上面。

沃尔夫冈&#8226\;恩斯特&#8226\;泡利(Wolfgang Ernst Pauli)才出生8个月,可怜的小家伙似乎一出世就和科学结缘。他的middle name,Ernst,就是因为他父亲崇拜著名的科学家恩斯特&#8226\;马赫(Ernst Mach)才给他取的。

而再过12个月,维尔兹堡(Wurzberg)的一位著名希腊文献教授就要喜滋滋地看着他的宝贝儿子小海森堡(Werner Karl Heisenberg)呱呱坠地。稍早前,罗马的一位公务员把他的孩子命名为恩里科;费米(Enrico Fermi)。20个月后,保罗&#8226\;狄拉克(Paul Dirac)也将出生在英国的布里斯托尔港。

好,演员到齐。那么,好戏也该上演了。

第三章 火流星 castor_v_pollux 原作

在量子初生的那些日子里,物理学的境遇并没有得到明显的改善。这个叛逆的小精灵被他的主人所抛弃,不得不在荒野中颠沛流离,积蓄力量以等待让世界震惊的那一天。在这段长达四年多的惨淡岁月里,人们带着一种鸵鸟心态来使用普朗克的公式,却掩耳盗铃般地不去追究那公式背后的意义。然而在他们的头上,浓厚的乌云仍然驱之不散,反而有越来越逼人的气势,一场荡涤世界的暴雨终究无可避免。

而预示这种巨变到来的,如同往常一样,是一道劈开天地的闪电。在混沌中,电火花擦出了耀眼的亮光,代表了永恒不变的希望。光和电这两种令神袛也敬畏的力量纠缠在一起,便在瞬间开辟出一整个新时代来。

说到这里,我们还是要不厌其烦地回到第一章的开头,再去看一眼赫兹那个意义非凡的实验。正如我们已经提到过的那样,赫兹接收器上电火花的爆跃,证实了电磁波的存在,但他同时也发现,一旦有光照射到那个缺口上,那么电火花便出现得容易一些。

赫兹在论文里对这个现象进行了描述,但没有深究其中的原因。在那个激动人心的伟大时代,要做的事情太多了,而且以赫兹的英年早逝,他也没有闲暇来追究每一个遇到的问题。但是别人随即在这个方面进行了深入的研究,不久事实就很清楚了,原来是这样的:当光照射到金属上的时候,会从它的表面打出电子来。原本束缚在金属表面原子里的电子,不知是什么原因,当暴露在一定光线之下的时候,便如同惊弓之鸟纷纷往外逃窜,就像见不得光线的吸血鬼家族。对于光与电之间存在的这种饶有趣味的现象,人们给它取了一个名字,叫做“光电效应”(The Photoelectric Effect)。

很快,关于光电效应的一系列实验就在各个实验室被作出。虽然在当时来说,这些实验都是非常粗糙和原始的,但种种结果依然都表明了光和电之间这种现象的一些基本性质。人们不久便知道了两个基本的事实:首先,对于某种特定的金属来说,光是否能够从它的表面打击出电子来,这只和光的频率有关。频率高的光线(比如紫外线)便能够打出能量较高的电子,而频率低的光(比如红光、黄光)则一个电子也打不出来。其次,能否打击出电子,这和光的强度无关。再弱的紫外线也能够打击出金属表面的电子,而再强的红光也无法做到这一点。增加光线的强度,能够做到的只是增加打击出电子的数量。比如强烈的紫光相对微弱的紫光来说,可以从金属表面打击出更多的电子来。

总而言之,对于特定的金属,能不能打出电子,由光的频率说了算。而打出多少电子,则由光的强度说了算。

但科学家们很快就发现,他们陷入了一个巨大的困惑中。因为……这个现象没有道理,它似乎不应该是这样的啊。

我们都已经知道,光是一种波动。对于波动来说,波的强度便代表了它的能量。我们都很容易理解,电子是被某种能量束缚在金属内部的,如果外部给予的能量不够,便不足以将电子打击出来。但是,照道理说,如果我们增加光波的强度,那便是增加它的能量啊,为什么对于红光来说,再强烈的光线都无法打击出哪怕是一个电子来呢?而频率,频率是什么东西呢?无非是波振动的频繁程度而已。如果频率高的话,便是说波振动得频繁一点,那么照理说频繁振动的光波应该打击出更多数量的电子才对啊。然而所有的实验都指向相反的方向:光的强度决定电子数目,光的频率决定能否打出电子。这不是开玩笑吗?

想象一个猎人去打兔子,兔子都躲在地下的洞里,轻易不肯出来。猎人知道,对于狡猾的兔子来说,可能单单敲锣打鼓不足以把它吓出来,而一定要采用比如说水淹的手法才行。就是说,采用何种手法决定了能不能把兔子赶出来的问题。再假设本地有一千个兔子洞,那么猎人有多少助手,可以同时向多少洞穴行动这个因素便决定了能够吓出多少只兔子的问题。但是,在实际打猎中,这个猎人突然发现,兔子出不出来不在于采用什么手法,而是有多少助手同时下手。如果只对一个兔子洞行动,哪怕天打五雷轰都没有兔子出来。而相反,有多少兔子被赶出来,这和我们的人数没关系,而是和采用的手法有关系。哪怕我有一千个人同时对一千个兔子洞敲锣打鼓,最多只有一个兔子跳出来。而只要我对一个兔子洞灌水,便会有一千只兔子四处乱窜。要是画漫画的话,这个猎人的头上一定会冒出一颗很大的汗珠。

科学家们发现,在光电效应问题上,他们面临着和猎人一样的尴尬处境。麦克斯韦的电磁理论在光电上显得一头雾水,不知怎么办才好。实验揭露出来的事实是简单而明了的,多次的重复只有更加证实了这个基本事实而已,但这个事实却和理论恰好相反。那么,问题出在哪里了呢?是理论错了,还是我们的眼睛在和我们开玩笑?

问题绝不仅仅是这些而已。种种迹象都表明,光的频率和打出电子的能量之间有着密切的关系。每一种特定频率的光线,它打出的电子的能量有一个对应的上限。打个比方说,如果紫外光可以激发出能量达到20电子伏的电子来,换了紫光可能就最多只有10电子伏。这在波动看来,是非常不可思议的。而且,根据麦克斯韦理论,一个电子的被击出,如果是建立在能量吸收上的话,它应该是一个连续的过程,这能量可以累积。也就是说,如果用很弱的光线照射金属的话,电子必须花一定的时间来吸收,才能达到足够的能量从而跳出表面。这样的话,在光照和电子飞出这两者之间就应该存在着一个时间差。但是,实验表明,电子的跃出是瞬时的,光一照到金属上,立即就会有电子飞出,哪怕再暗弱的光线,也是一样,区别只是在于飞出电子的数量多少而已。

咄咄怪事。

对于可怜的物理学家们来说,万事总是不遂他们的愿。好不容易有了一个基本上完美的理论,实验总是要搞出一些怪事来搅乱人们的好梦。这个该死的光电效应正是一个令人丧气和扫兴的东西。高雅而尊贵的麦克斯韦理论在这个小泥塘前面大大地犯难,如何跨越过去而不弄脏自己那华丽的衣裳,着实是一桩伤脑筋的事情。

然而,更加不幸的是,人们总是小看眼前的困难。有着洁癖的物理学家们还在苦思冥想着怎样可以把光电现象融入麦克斯韦理论之中去而不损害它的完美,他们却不知道这件事情比他们想象得要严重得多。很快人们就会发现,这根本不是袍子干不干净的问题,这是一个牵涉到整个物理体系基础的根本性困难。不过在当时,对于这一点,没有最天才、最大胆和最富有锐气的眼光,是无法看出来的。

不过话又说回来,科学上有史以来最天才、最大胆和最富有锐气的人物,恰恰生活在那个时代。

1905年,在瑞士的伯尔尼专利局,一位26岁的小公务员,三等技师职称,留着一头乱蓬蓬头发的年轻人把他的眼光在光电效应的这个问题上停留了一下。这个人的名字叫做阿尔伯特&#8226\;爱因斯坦。

于是在一瞬间,闪电划破了夜空。

暴风雨终于就要到来了



<<<返回上一页 <<<返回网站首页
<<<您的位置:首页>考研经验>考研笔记>其他专业笔记>正文