量子力学笔记十一



文件信息
文件来源  
文件作者  
更新时间 2005-5-8 10:28:44 
添加编辑 viewsnake 

辅助信息
打印功能 打印本文
背景颜色 杏黄 秋褐 胭红 芥绿 天蓝 雪青 炭灰 奶白
字体大小 特大号字 大号字 中号字 小号字
免责声明 本网站所有文章均来自网络,仅提供预览形式,不提供纸张形式,若涉及到版权的文章,请购买正版,毕竟在电脑上看也不舒服啊,呵呵,这是viewsnake个人网站,纯粹交流学习资料的地方。无商业行为。
选择更多免费考研资料:
阅读正文内容
 

上次我们布置了一道练习题,现在我们一起来把它的答案求出来。


┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ?
┗ ┛ ┗ ┛

如果你还记得我们那个公共巴士的比喻,那么乘号左边的矩阵I代表了我们的巴士I号线的收费表,乘号右边的矩阵II代表了II号线的收费表。I是一个2×2的表格,II也是一个2×2的表格,我们有理由相信,它们的乘积也应该是类似的形式,也是一个2×2的表格。

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃ ┃ a b ┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ┃ c d ┃
┗ ┛ ┗ ┛ ┗ ┛

但是,那答案到底是什么?我们该怎么求出abcd这四个未知数?更重要的是,I×II的意义是什么呢?

海森堡说,I×II,表示你先乘搭巴士I号线,然后转乘了II号线。答案中的a是什么呢?a处在第一行第一列,它也必定表示从A地出发到A地下车的某种收费情况。海森堡说,a,其实就是说,你搭乘I号线从A地出发,期间转乘II号线,最后又回到A地下车。因为是乘法,所以它表示“I号线收费”和“II号线收费”的乘积。但是,情况还不是那么简单,因为我们的路线可能不止有一种,a实际代表的是所有收费情况的“总和”。

如果这不好理解,那么我们干脆把题目做出来。答案中的a,正如我们已经说明了的,表示我搭I号线从A地出发,然后转乘II号线,又回到A地下车的收费情况的总和。那么,我们如何具体地做到这一点呢?有两种方法:第一种,我们可以乘搭I号线从A地到B地,然后在B地转乘II号线,再从B地回到A地。此外,还有一种办法,就是我们在A地上了I号线,随即在原地下车。然后还是在A地再上II号线,同样在原地下车。这虽然听起来很不明智,但无疑也是一种途径。那么,我们答案中的a,其实就是这两种方法的收费情况的总和。

现在我们看看具体数字应该是多少:第一种方法,我们先乘I号线从A地到B地,车费应该是多少呢?我们还记得海森堡的车费规则,那就看矩阵I横坐标为A纵坐标为B的那个数字,也就是第一行第二列的那个2,2块钱。好,随后我们又从B地转乘II号线回到了A地,这里的车费对应于矩阵II第二行第一列的那个4。所以第一种方法的“收费乘积”是2×4=8。但是,我们提到,还有另一种可能,就是我们在A地原地不动地上了I号线再下来,又上II号线再下来,这同样符合我们A地出发A地结束的条件。这对应于两个矩阵第一行第一列的两个数字的乘积,1×1=1。那么,我们的最终答案,a,就等于这两种可能的叠加,也就是说,a=2×4+1×1=9。因为没有第三种可能性了。

同样道理我们来求b。b代表先乘I号线然后转乘II号线,从A地出发最终抵达B地的收费情况总和。这同样有两种办法可以做到:先在A地上I号线随即下车,然后从A地坐II号线去B地。收费分别是1块(矩阵I第一行第一列)和3块(矩阵II第一行第二列),所以1×3=3。还有一种办法就是先乘I号线从A地到B地,收费2块(矩阵I第一行第二列),然后在B地转II号线原地上下,收费1块(矩阵II第二行第二列),所以2×1=1。所以最终答案:b=1×3+2×1=5。

大家可以先别偷看答案,自己试着求c和d。最后应该是这样的:c=3×1+1×4=7,d=3×3+1×1=10。所以:

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 2 ┃ ┃ 1 3 ┃ ┃ 9 5┃
┃ 3 1 ┃ × ┃ 4 1 ┃ = ┃ 7 10┃
┗ ┛ ┗ ┛ ┗ ┛

很抱歉让大家如此痛苦不堪,不过我们的确在学习新的事物。如果你觉得这种乘法十分陌生的话,那么我们很快就要给你更大的惊奇,但首先我们还是要熟悉这种新的运算规则才是。圣人说,温故而知新,我们不必为了自己新学到的东西而沾沾自喜,还是巩固巩固我们的基础吧,让我们把上面这道题目验算一遍。哦,不要昏倒,不要昏倒,其实没有那么乏味,我们可以把乘法的次序倒一倒,现在验算一遍II×I:

┏ ┓ ┏ ┓ ┏ ┓
┃ 1 3 ┃ ┃ 1 2 ┃ ┃ a b ┃
┃ 4 1 ┃ × ┃ 3 1 ┃ = ┃ c d ┃
┗ ┛ ┗ ┛ ┗ ┛

我知道大家都在唉声叹气,不过我还是坚持,复习功课是有益无害的。我们来看看a是什么,现在我们是先乘搭II号线,然后转I号线了,所以我们可以从A地上II号线,然后下来。再上I号线,然后又下来。对应的是1×1。另外,我们可以坐II号线去B地,在B地转I号线回到A地,所以是3×3=9。所以a=1×1+3×3=10。

喂,打瞌睡的各位,快醒醒,我们遇到问题了。在我们的验算里,a=10,不过我还记得,刚才我们的答案说a=9。各位把笔记本往回翻几页,看看我有没有记错?嗯,虽然大家都没有记笔记,但我还是没有记错,刚才我们的a=2×4+1×1=9。看来是我算错了,我们再算一遍,这次可要打起精神了:a代表A地上车A地下车。所以可能的情况是:我搭II号线在A地上车A地下车(矩阵II第一行第一列),1块。然后转I号线同样在A地上车A地下车(矩阵I第一行第一列),也是1块。1×1=1。还有一种可能是,我搭II号线在A地上车B地下车(矩阵II第一行第二列),3块。然后在B地转I号线从B地回到A地(矩阵II第二行第一列),3块。3×3=9。所以a=1+9=10。

嗯,奇怪,没错啊。那么难道前面算错了?我们再算一遍,好像也没错,前面a=1+8=9。那么,那么……谁错了?哈哈,海森堡错了,他这次可丢脸了,他发明了一种什么样的表格乘法啊,居然导致如此荒唐的结果:I×II ≠ II×I。

我们不妨把结果整个算出来:


┏ ┓
┃ 9 5┃
I×II= ┃ 7 10┃
┗ ┛
┏ ┓
┃ 10 5┃
II×I= ┃ 7 9┃
┗ ┛

的确,I×II ≠ II×I。这可真让人惋惜,原来我们还以为这种表格式的运算至少有点创意的,现在看来浪费了大家不少时间,只好说声抱歉。但是,慢着,海森堡还有话要说,先别为我们死去的脑细胞默哀,它们的死也许不是完全没有意义的。

大家冷静点,大家冷静点,海森堡摇晃着他那漂亮的头发说,我们必须学会面对现实。我们已经说过了,物理学,必须从唯一可以被实践的数据出发,而不是靠想象和常识习惯。我们要学会依赖于数学,而不是日常语言,因为只有数学才具有唯一的意义,才能告诉我们唯一的真实。我们必须认识到这一点:数学怎么说,我们就得接受什么。如果数学说I×II ≠ II×I,那么我们就得这么认为,哪怕世人用再嘲讽的口气来讥笑我们,我们也不能改变这一立场。何况,如果仔细审查这里面的意义,也并没有太大的荒谬:先搭乘I号线,再转II号线,这和先搭乘II号线,再转I号线,导致的结果可能是不同的,有什么问题吗?

好吧,有人讽刺地说,那么牛顿第二定律究竟是F=ma,还是F=am呢?

海森堡冷冷地说,牛顿力学是经典体系,我们讨论的是量子体系。永远不要对量子世界的任何奇特性质过分大惊小怪,那会让你发疯的。量子的规则,并不一定要受到乘法交换率的束缚。

他无法做更多的口舌之争了,1925年夏天,他被一场热病所感染,不得不离开哥廷根,到北海的一个小岛赫尔格兰(Helgoland)去休养。但是他的大脑没有停滞,在远离喧嚣的小岛上,海森堡坚定地沿着这条奇特的表格式道路去探索物理学的未来。而且,他很快就获得了成功:事实上,只要把矩阵的规则运用到经典的动力学公式里去,把玻尔和索末菲旧的量子条件改造成新的由坚实的矩阵砖块构造起来的方程,海森堡可以自然而然地推导出量子化的原子能级和辐射频率。而且这一切都可以顺理成章从方程本身解出,不再需要像玻尔的旧模型那样,强行附加一个不自然的量子条件。海森堡的表格的确管用!数学解释一切,我们的想象是靠不住的。

虽然,这种古怪的不遵守交换率的矩阵乘法到底意味着什么,无论对于海森堡,还是当时的所有人来说,都还仍然是一个谜题,但量子力学的基本形式却已经得到了突破进展。从这时候起,量子论将以一种气势磅礴的姿态向前迈进,每一步都那样雄伟壮丽,激起滔天的巨浪和美丽的浪花。接下来的3年是梦幻般的3年,是物理史上难以想象的3年,理论物理的黄金年代,终于要放射出它最耀眼的光辉,把整个20世纪都装点得神圣起来。

海森堡后来在写给好友范德沃登的信中回忆道,当他在那个石头小岛上的时候,有一晚忽然想到体系的总能量应该是一个常数。于是他试着用他那规则来解这个方程以求得振子能量。求解并不容易,他做了一个通宵,但求出来的结果和实验符合得非常好。于是他爬上一个山崖去看日出,同时感到自己非常幸运。

是的,曙光已经出现,太阳正从海平线上冉冉升起,万道霞光染红了海面和空中的云彩,在天地间流动着奇幻的辉光。在高高的石崖顶上,海森堡面对着壮观的日出景象,他脚下碧海潮生,一直延伸到无穷无尽的远方。是的,他知道,this is the moment,他已经作出生命中最重要的突破,而物理学的黎明也终于到来。


*********
饭后闲话:矩阵

我们已经看到,海森堡发明了这种奇特的表格,I×II ≠ II×I,连他自己都没把握确定这是个什么怪物。当他结束养病,回到哥廷根后,就把论文草稿送给老师波恩,让他评论评论。波恩看到这种表格运算大吃一惊,原来这不是什么新鲜东西,正是线性代数里学到的“矩阵”!回溯历史,这种工具早在1858年就已经由一位剑桥的数学家Arthur Cayley所发明,不过当时不叫“矩阵”而叫做“行列式”(determinant,这个字后来变成了另外一个意思,虽然还是和矩阵关系很紧密)。发明矩阵最初的目的,是简洁地来求解某些微分方程组(事实上直到今天,大学线性代数课还是主要解决这个问题)。但海森堡对此毫不知情,他实际上不知不觉地“重新发明”了矩阵的概念。波恩和他那精通矩阵运算的助教约尔当随即在严格的数学基础上发展了海森堡的理论,进一步完善了量子力学,我们很快就要谈到。

数学在某种意义上来说总是领先的。Cayley创立矩阵的时候,自然想不到它后来会在量子论的发展中起到关键作用。同样,黎曼创立黎曼几何的时候,又怎会料到他已经给爱因斯坦和他伟大的相对论提供了最好的工具。

乔治&#8226\;盖莫夫在那本受欢迎的老科普书《从一到无穷大》(One, Two, Three…Infinity)里说,目前数学还有一个大分支没有派上用场(除了智力体操的用处之外),那就是数论。古老的数论领域里已经有许多难题被解开,比如四色问题,费马大定理。也有比如著名的哥德巴赫猜想,至今悬而未决。天知道,这些理论和思路是不是在将来会给某个物理或者化学理论开道,打造出一片全新的天地来。

从赫尔格兰回来后,海森堡找到波恩,请求允许他离开哥廷根一阵,去剑桥讲课。同时,他也把自己的论文给了波恩过目,问他有没有发表的价值。波恩显然被海森堡的想法给迷住了,正如他后来回忆的那样:“我对此着了迷……海森堡的思想给我留下了深刻的印象,对于我们一直追求的那个体系来说,这是一次伟大的突破。” 于是当海森堡去到英国讲学的时候,波恩就把他的这篇论文寄给了《物理学杂志》(Zeitschrift fur Physik),并于7月29日发表。这无疑标志着新生的量子力学在公众面前的首次亮相。

但海森堡古怪的表格乘法无疑也让波恩困扰,他在7月15日写给爱因斯坦的信中说:“海森堡新的工作看起来有点神秘莫测,不过无疑是很深刻的,而且是正确的。”但是,有一天,波恩突然灵光一闪:他终于想起来这是什么了。海森堡的表格,正是他从前所听说过的那个“矩阵”!

但是对于当时的欧洲物理学家来说,矩阵几乎是一个完全陌生的名字。甚至连海森堡自己,也不见得对它的性质有着完全的了解。波恩决定为海森堡的理论打一个坚实的数学基础,他找到泡利,希望与之合作,可是泡利对此持有强烈的怀疑态度,他以他标志性的尖刻语气对波恩说:“是的,我就知道你喜欢那种冗长和复杂的形式主义,但你那无用的数学只会损害海森堡的物理思想。”波恩在泡利那里碰了一鼻子灰,不得不转向他那熟悉矩阵运算的年轻助教约尔当(Pascual Jordan,再过一个礼拜,就是他101年诞辰),两人于是欣然合作,很快写出了著名的论文《论量子力学》(Zur Quantenmechanik),发表在《物理学杂志》上。在这篇论文中,两人用了很大的篇幅来阐明矩阵运算的基本规则,并把经典力学的哈密顿变换统统改造成为矩阵的形式。传统的动量p和位置q这两个物理变量,现在成为了两个含有无限数据的庞大表格,而且,正如我们已经看到的那样,它们并不遵守传统的乘法交换率,p×q ≠ q×p。

波恩和约尔当甚至把p×q和q×p之间的差值也算了出来,结果是这样的:

pq – qp = (h/2πi) I

h是我们已经熟悉的普朗克常数,i是虚数的单位,代表-1的平方根,而I叫做单位矩阵,相当于矩阵运算中的1。波恩和约尔当奠定了一种新的力学——矩阵力学的基础。在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被“包含”在我们的新力学中,成为一种特殊情况下的表现形式。

这种新的力学很快就得到进一步完善。从剑桥返回哥廷根后,海森堡本人也加入了这个伟大的开创性工作中。11月26日,《论量子力学II》在《物理学杂志》上发表,作者是波恩,海森堡和约尔当。这篇论文把原来只讨论一个自由度的体系扩展到任意个自由度,从而彻底建立了新力学的主体。现在,他们可以自豪地宣称,长期以来人们所苦苦追寻的那个目标终于达到了,多年以来如此困扰着物理学家的原子光谱问题,现在终于可以在新力学内部完美地解决。《论量子力学II》这篇文章,被海森堡本人亲切地称呼为“三人论文”(Dreimannerarbeit)的,也终于注定要在物理史上流芳百世。

新体系显然在理论上获得了巨大的成功。泡利很快就改变了他的态度,在写给克罗尼格(Ralph Laer Kronig)的信里,他说:“海森堡的力学让我有了新的热情和希望。”随后他很快就给出了极其有说服力的证明,展示新理论的结果和氢分子的光谱符合得非常完美,从量子规则中,巴尔末公式可以被自然而然地推导出来。非常好笑的是,虽然他不久前还对波恩咆哮说“冗长和复杂的形式主义”,但他自己的证明无疑动用了最最复杂的数学。

不过,对于当时其他的物理学家来说,海森堡的新体系无疑是一个怪物。矩阵这种冷冰冰的东西实在太不讲情面,不给人以任何想象的空间。人们一再追问,这里面的物理意义是什么?矩阵究竟是个什么东西?海森堡却始终护定他那让人沮丧的立场:所谓“意义”是不存在的,如果有的话,那数学就是一切“意义”所在。物理学是什么?就是从实验观测量出发,并以庞大复杂的数学关系将它们联系起来的一门科学,如果说有什么图像能够让人们容易理解和记忆的话,那也是靠不住的。但是,不管怎么样,毕竟矩阵力学对于大部分人来说都太陌生太遥远了,而隐藏在它背后的深刻含义,当时还远远没有被发掘出来。特别是,p×q ≠ q×p,这究竟代表了什么,令人头痛不已。

一年后,当薛定谔以人们所喜闻乐见的传统方式发布他的波动方程后,几乎全世界的物理学家都松了一口气:他们终于解脱了,不必再费劲地学习海森堡那异常复杂和繁难的矩阵力学。当然,人人都必须承认,矩阵力学本身的伟大含义是不容怀疑的。

但是,如果说在1925年,欧洲大部分物理学家都还对海森堡,波恩和约尔当的力学一知半解的话,那我们也不得不说,其中有一个非常显著的例外,他就是保罗&#8226\;狄拉克。在量子力学大发展的年代,哥本哈根,哥廷根以及慕尼黑三地抢尽了风头,狄拉克的崛起总算也为老牌的剑桥挽回了一点颜面。

保罗&#8226\;埃德里安&#8226\;莫里斯&#8226\;狄拉克(Paul Adrien Maurice Dirac)于1902年8月8日出生于英国布里斯托尔港。他的父亲是瑞士人,当时是一位法语教师,狄拉克是家里的第二个孩子。许多大物理学家的童年教育都是多姿多彩的,比如玻尔,海森堡,还有薛定谔。但狄拉克的童年显然要悲惨许多,他父亲是一位非常严肃而刻板的人,给保罗制定了众多的严格规矩。比如他规定保罗只能和他讲法语(他认为这样才能学好这种语言),于是当保罗无法表达自己的时候,只好选择沉默。在小狄拉克的童年里,音乐、文学、艺术显然都和他无缘,社交活动也几乎没有。这一切把狄拉克塑造成了一个沉默寡言,喜好孤独,淡泊名利,在许多人眼里显得geeky的人。有一个流传很广的关于狄拉克的笑话是这样说的:有一次狄拉克在某大学演讲,讲完后一个观众起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,他还没有回答问题。

“回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”

1921年,狄拉克从布里斯托尔大学电机工程系毕业,恰逢经济大萧条,结果没法找到工作。事实上,很难说他是否会成为一个出色的工程师,狄拉克显然长于理论而拙于实验。不过幸运的是,布里斯托尔大学数学系又给了他一个免费进修数学的机会,2年后,狄拉克转到剑桥,开始了人生的新篇章。

我们在上面说到,1925年秋天,当海森堡在赫尔格兰岛作出了他的突破后,他获得波恩的批准来到剑桥讲学。当时海森堡对自己的发现心中还没有底,所以没有在公开场合提到自己这方面的工作,不过7月28号,他参加了所谓“卡皮察俱乐部”的一次活动。卡皮察(P.L.Kapitsa)是一位年轻的苏联学生,当时在剑桥跟随卢瑟福工作。他感到英国的学术活动太刻板,便自己组织了一个俱乐部,在晚上聚会,报告和讨论有关物理学的最新进展。我们在前面讨论卢瑟福的时候提到过卡皮察的名字,他后来也获得了诺贝尔奖。

狄拉克也是卡皮察俱乐部的成员之一,他当时不在剑桥,所以没有参加这个聚会。不过他的导师福勒(William Alfred Fowler)参加了,而且大概在和海森堡的课后讨论中,得知他已经发明了一种全新的理论来解释原子光谱问题。后来海森堡把他的证明寄给了福勒,而福勒给了狄拉克一个复印本。这一开始没有引起狄拉克的重视,不过大概一个礼拜后,他重新审视海森堡的论文,这下他把握住了其中的精髓:别的都是细枝末节,只有一件事是重要的,那就是我们那奇怪的矩阵乘法规则:p×q ≠ q×p。

*********
饭后闲话:约尔当

恩斯特&#8226\;帕斯库尔&#8226\;约尔当(Ernst Pascual Jordan)出生于汉诺威。在我们的史话里已经提到,他是物理史上两篇重要的论文《论量子力学》I和II的作者之一,可以说也是量子力学的主要创立者。但是,他的名声显然及不上波恩或者海森堡。

这里面的原因显然也是多方面的,1925年,约尔当才22岁,无论从资格还是名声来说,都远远及不上元老级的波恩和少年成名的海森堡。当时和他一起做出贡献的那些人,后来都变得如此著名:波恩,海森堡,泡利,他们的光辉耀眼,把约尔当完全给盖住了。

从约尔当本人来说,他是一个害羞和内向的人,说话有口吃的毛病,总是结结巴巴的,所以他很少授课或发表演讲。更严重的是,约尔当在二战期间站到了希特勒的一边,成为一个纳粹的同情者,被指责曾经告密。这大大损害了他的声名。

约尔当是一个作出了许多伟大成就的科学家。除了创立了基本的矩阵力学形式,为量子论打下基础之外,他同样在量子场论,电子自旋,量子电动力学中作出了巨大的贡献。他是最先证明海森堡和薛定谔体系同等性的人之一,他发明了约尔当代数,后来又广泛涉足生物学、心理学和运动学。他曾被提名为诺贝尔奖得主,却没有成功。约尔当后来显然也对自己的成就被低估有些恼火,1964年,他声称《论量子力学》一文其实几乎都是他一个人的贡献——波恩那时候病了。这引起了广泛的争议,不过许多人显然同意,约尔当的贡献应当得到更多的承认。

p×q ≠ q×p。如果说狄拉克比别人天才在什么地方,那就是他可以一眼就看出这才是海森堡体系的精髓。那个时候,波恩和约尔当还在苦苦地钻研讨厌的矩阵,为了建立起新的物理大厦而努力地搬运着这种庞大而又沉重的表格式方砖,而他们的文章尚未发表。但狄拉克是不想做这种苦力的,他轻易地透过海森堡的表格,把握住了这种代数的实质。不遵守交换率,这让我想起了什么?狄拉克的脑海里闪过一个名词,他以前在上某一门动力学课的时候,似乎听说过一种运算,同样不符合乘法交换率。但他还不是十分确定,他甚至连那种运算的定义都给忘了。那天是星期天,所有的图书馆都关门了,这让狄拉克急得像热锅上的蚂蚁。第二天一早,图书馆刚刚开门,他就冲了进去,果然,那正是他所要的东西:它的名字叫做“泊松括号”。

我们还在第一章讨论光和菲涅尔的时候,就谈到过泊松,还有著名的泊松光斑。泊松括号也是这位法国科学家的杰出贡献,不过我们在这里没有必要深入它的数学意义。总之,狄拉克发现,我们不必花九牛二虎之力去搬弄一个晦涩的矩阵,以此来显示和经典体系的决裂。我们完全可以从经典的泊松括号出发,建立一种新的代数。这种代数同样不符合乘法交换率,狄拉克把它称作“q数”(q表示“奇异”或者“量子”)。我们的动量、位置、能量、时间等等概念,现在都要改造成这种q数。而原来那些老体系里的符合交换率的变量,狄拉克把它们称作“c数”(c代表“普通”)。

“看。”狄拉克说,“海森堡的最后方程当然是对的,但我们不用他那种大惊小怪,牵强附会的方式,也能够得出同样的结果。用我的方式,同样能得出xy-yx的差值,只不过把那个让人看了生厌的矩阵换成我们的经典泊松括号[x,y]罢了。然后把它用于经典力学的哈密顿函数,我们可以顺理成章地导出能量守恒条件和玻尔的频率条件。重要的是,这清楚地表明了,我们的新力学和经典力学是一脉相承的,是旧体系的一个扩展。c数和q数,可以以清楚的方式建立起联系来。”

狄拉克把论文寄给海森堡,海森堡热情地赞扬了他的成就,不过带给狄拉克一个糟糕的消息:他的结果已经在德国由波恩和约尔当作出了,是通过矩阵的方式得到的。想来狄拉克一定为此感到很郁闷,因为显然他的法子更简洁明晰。随后狄拉克又出色地证明了新力学和氢分子实验数据的吻合,他又一次郁闷了——泡利比他快了一点点,五天而已。哥廷根的这帮家伙,海森堡,波恩,约尔当,泡利,他们是大军团联合作战,而狄拉克在剑桥则是孤军奋斗,因为在英国懂得量子力学的人简直屈指可数。但是,虽然狄拉克慢了那么一点,但每一次他的理论都显得更为简洁、优美、深刻。而且,上天很快会给他新的机会,让他的名字在历史上取得不逊于海森堡、波恩等人的地位。

现在,在旧的经典体系的废墟上,矗立起了一种新的力学,由海森堡为它奠基,波恩,约尔当用矩阵那实心的砖块为它建造了坚固的主体,而狄拉克的优美的q数为它做了最好的装饰。现在,唯一缺少的就是一个成功的广告和落成典礼,把那些还在旧废墟上唉声叹气的人们都吸引到新大厦里来定居。这个庆典在海森堡取得突破后3个月便召开了,它的主题叫做“电子自旋”。

我们还记得那让人头痛的“反常塞曼效应”,这种复杂现象要求引进1/2的量子数。为此,泡利在1925年初提出了他那著名的“不相容原理”的假设,我们前面已经讨论过,这个规定是说,在原子大厦里,每一间房间都有一个4位数的门牌号码,而每间房只能入住一个电子。所以任何两个电子也不能共享同一组号码。

这个“4位数的号码”,其每一位都代表了电子的一个量子数。当时人们已经知道电子有3个量子数,这第四个是什么,便成了众说纷纭的谜题。不相容原理提出后不久,当时在哥本哈根访问的克罗尼格(Ralph Kronig)想到了一种可能:就是把这第四个自由度看成电子绕着自己的轴旋转。他找到海森堡和泡利,提出了这一思路,结果遭到两个德国年轻人的一致反对。因为这样就又回到了一种图像化的电子概念那里,把电子想象成一个实实在在的小球,而违背了我们从观察和数学出发的本意了。如果电子真是这样一个带电小球的话,在麦克斯韦体系里是不稳定的,再说也违反相对论——它的表面旋转速度要高于光速。

到了1925年秋天,自旋的假设又在荷兰莱顿大学的两个学生,乌仑贝克(George Eugene Uhlenbeck)和古德施密特(Somul Abraham Goudsmit)那里死灰复燃了。当然,两人不知道克罗尼格曾经有过这样的意见,他们是在研究光谱的时候独立产生这一想法的。于是两人找到导师埃仑费斯特(Paul Ehrenfest)征求意见。埃仑费斯特也不是很确定,他建议两人先写一个小文章发表。于是两人当真写了一个短文交给埃仑费斯特,然后又去求教于老资格的洛仑兹。洛仑兹帮他们算了算,结果在这个模型里电子表面的速度达到了光速的10倍。两人大吃一惊,风急火燎地赶回大学要求撤销那篇短文,结果还是晚了,埃仑费斯特早就给Nature杂志寄了出去。据说,两人当时懊恼得都快哭了,埃仑费斯特只好安慰他们说:“你们还年轻,做点蠢事也没关系。”

还好,事情并没有想象的那么糟糕。玻尔首先对此表示赞同,海森堡用新的理论去算了算结果后,也转变了反对的态度。到了1926年,海森堡已经在说:“如果没有古德施密特,我们真不知该如何处理塞曼效应。”一些技术上的问题也很快被解决了,比如有一个系数2,一直和理论所抵触,结果在玻尔研究所访问的美国物理学家托马斯发现原来人们都犯了一个计算错误,而自旋模型是正确的。很快海森堡和约尔当用矩阵力学处理了自旋,结果大获全胜,很快没有人怀疑自旋的正确性了。

哦,不过有一个例外,就是泡利,他一直对自旋深恶痛绝。在他看来,原本电子已经在数学当中被表达得很充分了——现在可好,什么形状、轨道、大小、旋转……种种经验性的概念又幽灵般地回来了。原子系统比任何时候都像个太阳系,本来只有公转,现在连自转都有了。他始终按照自己的路子走,决不向任何力学模型低头。事实上,在某种意义上泡利是对的,电子的自旋并不能想象成传统行星的那种自转,它具有1/2的量子数,也就是说,它要转两圈才露出同一个面孔,这里面的意义只能由数学来把握。后来泡利真的从特定的矩阵出发,推出了这一性质,而一切又被伟大的狄拉克于1928年统统包含于他那相对论化了的量子体系中,成为电子内禀的自然属性。

但是,无论如何,1926年海森堡和约尔当的成功不仅是电子自旋模型的胜利,更是新生的矩阵力学的胜利。不久海森堡又天才般地指出了解决有着两个电子的原子——氦原子的道路,使得新体系的威力再次超越了玻尔的老系统,把它的疆域扩大到以前未知的领域中。已经在迷雾和荆棘中彷徨了好几年的物理学家们这次终于可以扬眉吐气,把长久郁积的坏心情一扫而空,好好地呼吸一下那新鲜的空气。

但是,人们还没有来得及歇一歇脚,欣赏一下周围的风景,为目前的成就自豪一下,我们的快艇便又要前进了。物理学正处在激流之中,它飞流直下,一泻千里,带给人晕眩的速度和刺激。自牛顿起250年来,科学从没有在哪个时期可以像如今这般翻天覆地,健步如飞。量子的力量现在已经完全苏醒了,在接下来的3年间,它将改变物理学的一切,在人类的智慧中刻下最深的烙印,并影响整个20世纪的面貌。

当乌仑贝克和古德施密特提出自旋的时候,玻尔正在去往莱登(Leiden)的路上。当他的火车到达汉堡的时候,他发现泡利和斯特恩(Stern)站在站台上,只是想问问他关于自旋的看法,玻尔不大相信,但称这很有趣。到达莱登以后,他又碰到了爱因斯坦和埃仑费斯特,爱因斯坦详细地分析了这个理论,于是玻尔改变了看法。在回去的路上,玻尔先经过哥廷根,海森堡和约尔当站在站台上。同样的问题:怎么看待自旋?最后,当玻尔的火车抵达柏林,泡利又站在了站台上——他从汉堡一路赶到柏林,想听听玻尔一路上有了什么看法的变化。

人们后来回忆起那个年代,简直像是在讲述一个童话。物理学家们一个个都被洪流冲击得站不住脚:节奏快得几乎不给人喘息的机会,爆炸性的概念一再地被提出,每一个都足以改变整个科学的面貌。但是,每一个人都感到深深的骄傲和自豪,在理论物理的黄金年代,能够扮演历史舞台上的那一个角色。人们常说,时势造英雄,在量子物理的大发展时代,英雄们的确留下了最最伟大的业绩,永远让后人心神向往。

回到我们的史话中来。现在,花开两朵,各表一支。我们去看看量子论是如何沿着另一条完全不同的思路,取得同样伟大的突破的



<<<返回上一页 <<<返回网站首页
<<<您的位置:首页>考研经验>考研笔记>其他专业笔记>正文