哈尔滨工业大学2006年博士研究生入学考试参考大纲——基础数学专业:拓扑学



文件信息
文件来源 免费考研网 
文件作者 免费考研网 
更新时间 2005-9-8 8:44:45 
添加编辑  

辅助信息
打印功能 打印本文
背景颜色 杏黄 秋褐 胭红 芥绿 天蓝 雪青 炭灰 奶白
字体大小 特大号字 大号字 中号字 小号字
免责声明 本网站所有文章均来自网络,仅提供预览形式,不提供纸张形式,若涉及到版权的文章,请购买正版,毕竟在电脑上看也不舒服啊,呵呵,这是viewsnake个人网站,纯粹交流学习资料的地方。无商业行为。
选择更多免费考研资料:
阅读正文内容
一.  考试要求
要求考生全面系统地掌握点集拓扑和代数拓扑理论的基本知识,具备较强的分析问题与解决问题的能力。
二.考试内容
1)  点集拓扑部分
n       度量空间的定义和基本性质
n       拓扑空间的定义和基本性质
n       连续映射的定义、等价条件和连续映射的基本性质
n       拓扑基、子基、乘积空间的定义和基本性质
n       同胚与拓扑不变性质
n       分离公理与可数性公理的定义和基本性质
n       拓扑空间的紧致性、连通性、道路连通性、度量空间中的紧致子集等的定义和基本性质
n       乌日松引理、Tietze扩张定理及其应用
n       商空间与商映射的定义和基本性质
2)  代数拓扑部分
n       映射的同伦、空间的同伦等价的定义和基本性质
n       基本群的定义、基本性质和同伦不变性
n       Van Kampen定理, 的基本群的计算、基本群的应用
n       流形的定义、闭曲面的平面表示、闭曲面的基本群的计算和闭曲面的分类定理
n       单纯同调群的定义、基本性质
n       重心重分和单纯逼近存在性定理及其应用、单纯同调群的同伦不变性
n       球面自映射的映射度的定义和基本性质、保径映射的映射度及其应用、Lefschetz不动点定理和应用
三、试卷结构
考试时间180分钟,满分100分
1)  试题结构
n       概念题(15分)
n       简答题(15分)
n       证明题(40分)
n       应用题(30分)
2)  内容结构
n       点集拓扑部分(40分)
n       代数拓扑部分(60分)
四、参考书目见招生简章

相关阅读内容

<<<返回上一页 <<<返回网站首页
<<<您的位置:首页>考研经验>专业课经验>正文