一、考试要求
要求考生全面系统地掌握半经典激光理论的基本概念、基本理论和分析方法,并且能灵活运用其分析、解决相关问题。
二、考试内容
1 密度矩阵和光的Bloch方程
w 光与二能级原子的作用,
w 纯系综的密度矩阵,混合系综的密度矩阵,密度矩阵的基本性质
w 光学Bloch方程, 慢包络近似和旋转波近似,光学Bloch方程的矢量形式.
2 Maxwell-Bloch方程
w Maxwell方程与激光光场方程,
w 光学Bloch方程的推导,
w 行波与二能级原子相互作用的Maxwell-Bloch方程,
w 谐振腔中的Maxwell-Bloch方程,
w Haken的激光Maxwell-Bloch方程,
w 均匀加宽单模激光的行波方程。
w 归一化的宏观物理量的Maxwell-Bloch方程。
3 Haken的半经典激光理论
w 激光器的Maxwell-Bloch方程的稳定性和阈值
w Maxwell-Bloch方程的的定态解,
w 单模激光器的瞬态特性,非共振的单模激光器,
w 锁模激光器,
w 从半经典理论到速率方程的过渡。
4 Lamb的半经典激光理论
w 激光器的场方程
w 增益介质的宏观极化强度,
w 单模激光器,
w 多模激光器,双模激光器
5 光学双稳态
w 光学双稳态的基本概念
w 光学双稳的Maxwell-Bloch方程,
w 吸收光学双稳性何色散双稳性,
w 光学双稳性的相变类比
6 激光混沌
¨ 混沌的基本概念,
¨ 倍周期分叉,
¨ Lorentz分叉与奇怪吸引子,
¨ CO2激光器的混沌的理论分析
三、试卷结构
考试时间180分钟,满分100分。
1 题型结构
w 概念题(30分)
w 理论题(70分)
2 内容结构
w 密度矩阵(10分)
w Maxwell_Bloch方程(30分)
w Haken和Lamb激光理论(40分)
w 双稳态和激光混沌(20分)
四、参考书目见招生简章