一、考试的总体要求
主要考察学生掌握《数学分析》的基本知识,基本理论和基本技能的情况及其用分析的理论与方法分析问题和解决问题的能力。
二、考试的内容及比例(重点部分)
极限(包括上、下极限、二重极限和累次极限)概念、性质与计算;函数的连续性和一致连续性及有界闭区域上连续函数的性质;函数的导数、微分、偏导数和全微分;微分中值定理及导数的应用(包括偏导数在几何上的应用);二元函数的极值与条件极值;不定积分、定积分的概念、性质及计算;定积分存在的条件;重积分、曲线积分、曲面积分的概念、性质与计算及各种积分之间的关系;各种积分在几何上与物理上的应用;数项级数敛散性判别法(包括条件收敛和绝对收敛);函数列、函数项级数的一致收敛性及其判别法;一致收敛的函数项级数的性质;求幂级数的收敛域及其和函数;函数的幂级数与富里埃级数展开;含参变量积分的概念、性质;含参变量广义积分一致收敛的概念及其判别法;一致收敛的含参变量广义积分的性质及其应用。
极限论占15%,单变量微积分学占40%,级数论占25%,多变量微积分学占20%。
三、试卷题型及比例
选择题、填空题、简答题和计算题约占70%,证明题约占30%。
四、考试形式及时间
考试形式均为笔试。考试时间为三小时。(满分150分)
五、主要参考教材(参考书目)
《数学分析》(二版),复旦大学数学系陈传璋等编,高等教育出版社