2004年同济大学工程硕士研究生入学考试考试大纲:数学



文件信息
文件来源 免费考研网 
文件作者 免费考研网 
更新时间 2005-9-9 9:45:47 
添加编辑  

辅助信息
打印功能 打印本文
背景颜色 杏黄 秋褐 胭红 芥绿 天蓝 雪青 炭灰 奶白
字体大小 特大号字 大号字 中号字 小号字
免责声明 本网站所有文章均来自网络,仅提供预览形式,不提供纸张形式,若涉及到版权的文章,请购买正版,毕竟在电脑上看也不舒服啊,呵呵,这是viewsnake个人网站,纯粹交流学习资料的地方。无商业行为。
选择更多免费考研资料:
阅读正文内容
 
数学甲

一、考试的基本要求

    要求学生比较系统地理解微积分和线性代数的基本概念和基本理论,掌握微积分和线性代数的基本方法.要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.

二、考试方法和考试时间

    工程硕士研究生入学数学考试为笔试,考试时间为3小时.

三、考试科目、考试内容和考试要求

考试科目
高等数学、线性代数
按照各专业的不同要求分数学甲、数学乙两种类型.


数学甲
高等数学

1.函数、极限与连续
考试内容

    函数的概念及表示法  函数的有界性、单调性、周期性和奇偶性  复合函数、反函数、分段函数和隐函数  基本初等函数的性质及其图形  初等函数  简单应用问题函数关系的建立  数列极限与函数极限的定义以及它们的性质  函数的左极限与右极限  无穷小和无穷大的概念及其关系  无穷小的性质及无穷小的比较  极限的四则运算  极限存在的两个准则:单调有界准则和夹逼准则  两个重要极限  函数连续的概念  函数间断点的类型  初等函数的连续性  闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理、零点定理)
    考试要求

    (])理解函数的概念,掌握函数的表示方法.
    (2)了解函数的奇偶性、单调性、周期性和有界性.
    (3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
    (4)掌握基本初等函数的性质及其图形.
    (5)会建立简单应用问题中的函数关系式.
    (6)理解极限的概念,理解函数的左极限与右极限的概念,以及极限存在与左、右极限之间的关系.
    (7)掌握极限的性质及四则运算法则.
    (8)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
    (9)理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.
    (10)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
    (11)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理及零点定理)并会应用这些性质.

2.一元函数微分学
考试内容

    导数与微分的概念  导数的几何意义  函数的可导性与连续性之间的关系  平面曲线的切线和法线  基本初等函数的导数  导数与微分的四则运算  复合函数、反函数、隐函数以及参数方程所确定的函数的微分法  高阶导数的概念  某些简单函数的 阶导数    罗尔定理  拉格朗日中值定理  柯西中值定理  泰勒公式  洛必达法则  函数单调性的判定  函数的极值及其求法  函数图形的凹凸性、拐点及渐近线    函数最大最小值的求法及简单应用  弧微分

考试要求

    (1)理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.
    (2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分.
    (3)了解高阶导数的概念,会求简单函数的 阶导数.
    (4)会求分段函数的一阶、二阶导数.
    (5)会求隐函数以及参数方程所确定的函数的一阶、二阶导数,会求反函数的导数.
    (6)理解并会用罗尔定理,拉格朗日中值定理.
    (7)了解并会用柯西中值定理和泰勒中值定理.
    (8)理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法,掌握函数最大最小值的求法及简单应用.
    (9)会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平和铅直渐近线.
    (10)掌握用洛必达法则求未定式极限的方法.

3.一元函数积分学
考试内容

    原函数和不定积分的概念  不定积分的基本性质  基本积分公式  定积分的概念和性质  定积分中值定理  变上限定积分及其导数  牛顿-莱布尼茨公式  不定积分和定积分的换元积分法和分部积分法    反常积分的概念及其计算  定积分的应用

考试要求

    (1)理解原函数,不定积分和定积分的概念
    (2)掌握不定积分和定积分的基本性质及定积分中值定理,掌握不定积分的基本公式,掌握不定积分和定积分的换元积分法和分部积分法.
    (3)理解变上限定积分定义的函数及其求导定理,掌握牛顿-莱布尼茨公式.
    (4)了解反常积分的概念并会计算反常积分.
    (5)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积,平行截面面积为已知的立体体积等.

4.向量代数与空间解析几何
考试内容

    向量的概念  向量的线性运算  向量的数量积和向量积的概念及运算  两向量垂直平行的条件  两向量的夹角  向量的坐标表达式及其运算  单位向量  方向数与方向余弦  曲面方程和空间曲线方程的概念  平面方程、直线方程  平面与平面、平面与直线,直线与直线的平行、垂直的条件和夹角  点到平面和点到直线的距离  球面  母线平行于坐标轴的柱面  旋转轴为坐标轴的旋转曲面的方程  常用的二次曲面方程及其图形  空间曲线的参数方程和一般方程  空间曲线在坐标面上的投影曲线方程

考试要求

    (1)理解空间直角坐标系,理解向量的概念及其表示.
    (2)掌握向量的运算(线性运算、数量积、向量积),了解两个向量垂直、平行的条件.
    (3)掌握单位向量、方向数与方向余弦、向量的坐标表示式,以及用坐标表示式进行向量运算的方法.
    (4)掌握平面方程空间直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.
    (5)理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面方程及母线平行于坐标轴的柱面方程.
    (6)了解空间曲线的参数方程和一般方程.
    (7)了解空间曲线在坐标平面上的投影,井会求其方程.

5.多元函数微分学
考试内容

    多元函数的概念  二元函数的几何意义  二元函数的极限和连续的概念,有界闭区域上多元连续函数的性质  多元函数偏导数和全微分的概念  全微分存在的必要条件和充分条件  多元复合函数、隐函数的求导法  二阶偏导数  方向导数和梯度的概念及其计算  空间曲线的切线和法平面  曲面的切平面和法线  多元函数极值和条件极值的概念  多元函数极值的必要条件  二元函数极值的充分条件  极值的求法  拉格朗日乘数法  多元函数的最大值、最小值及其简单应用

考试要求

    (1)理解多元函数的概念,理解二元函数的几何意义.
    (2)了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.
    (3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.
    (4)理解方向导数与梯度的概念并掌握其计算方法.
    (5)掌握多元复合函数偏导数的求法.
    (6)会求隐函数(包括由方程组确定的隐函数)的偏导数.
    (7)了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
    (8)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题,

6.多元函数积分学
考试内容

    二重积分的概念及性质  二重积分的计算和应用  两类曲线积分的概念、性质及计算两类曲线积分的关系  格林公式  平面曲线积分与路径无关的条件  巳知全微分求原函数
    考试要求
    (1)理解二重积分的概念,了解重积分的性质,了解二重积分的中值定理.
    (2)掌握二重积分(直角坐标、极坐标)的计算方法.
    (3)理解两类曲线积分的概念  了解两类曲线积分的性质及两类曲线积分的关系.
    (4)掌握计算两类曲线积分的方法.
    (5)掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.
    (6)会用重积分、曲线积分求平面图形的面积、体积、曲面面积.

7.无穷级数
考试内容

    常数项级数的收敛与发散的概念  收敛级数的和的概念  级数的基本性质与收敛的必要条件  几何级数与 -级数以及它们的收敛性  正项级数收敛性的比较判别法、比值判别法及根值判别法  交错级数与莱布尼茨定理  任意项级数的绝对收敛与条件收敛  函数项级数的收敛域与和函数的概念  幂级数及其收敛半径、收敛区间(指开区间)和收敛域  幂级数的和函数  幂级数在其收敛区间内的基本性质  简单幂级数的和函数的求法  , , , 的麦克劳林展开式.

考试要求

    (1)理解常数项级数的收敛与发散以及收敛级数的和的概念,掌握级数的基本性质与收敛的必要条件. 
    (2)掌握几何级数与 -级数的收敛与发散的条件. 
    (3)掌握正项级数收敛性的比较判别法、比值判别法、根值判别法. 
    (4)掌握交错级数的莱布尼茨定理. 
    (5)了解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系.
    (6)了解函数项级数的收敛域与和函数的概念.
    (7)掌握幂级数的收敛半径、收敛区间及收敛域的求法.
    (8)了解幂级数在其收敛区间内的一些基本性质,会求—些简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和.
    (9)掌握 , , , 的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数. 

8.常微分方程
考试内容

    常微分方程的概念  微分方程的解、阶、通解、初始条件和特解  变量可分离的方程  齐次方程  一阶线性方程  全微分方程 可降阶的高阶微分方程  线性微分方程解的性质及解的结构定理  二阶常系数齐次线性微分方程  简单的二阶常系数非齐次线性微分方程  微分方程的简单应用
    
考试要求

    (1)了解微分方程及其解、阶、通解、初始条件和特解等概念.
    (2)掌握变量可分离的方程及一阶线性方程的解法. 
    (3)会解齐次方程,全微分方程.
    (4)会用降阶法解下列方程: , , .
    (5)理解线性微分方程解的性质及解的结构定理. 
    (6)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
    (7)会求自由项为多项式、指数函数,正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解.
    (8)会用微分方程解决一些简单的应用问题. 


线性代数
1.行列式
考试内容
    行列式的概念和基本性质  行列式按行展开定理

考试要求

    (1)了解行列式的概念,掌握行列式的基本性质.
    (2)会应用行列式的性质和行列式按行展开定理计算行列式.

2.矩阵
考试内容

    矩阵的概念  特殊矩阵(单位矩阵,对角矩阵、三角矩阵、对称矩阵)及它们的性质  矩阵的加法  数乘和乘法的计算及性质  矩阵的转置及性质  方阵的幂  方阵乘积的行列式  逆矩阵的概念、性质及求法  矩阵可逆的充分必要条件  矩阵的伴随矩阵  矩阵的初等变换  初等矩阵  矩阵等价  矩阵的秩

考试要求

    (1)理解矩阵的概念.
    (2)了解单位矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质.
    (3)掌握矩阵的加法、数乘、乘法、转置以及它们的运算规律,了解方阵的幂、方阵乘积的行列式.
    (4)理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆.
    (5)掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

3.向量
考试内容

    向量的概念  向量的线性组合和线性表示  向量组的线性相关和线性无关  向量组的极大线性无关组  等价向量组  向量组的秩  向量组的秩与矩阵的秩之间的关系

考试要求

    (1)理解 维向量的概念,向量的线性组合和线性表示.
    (2)理解向量组的线性相关和线性无关的定义,了解并会用有关向量组的线性相关和线性无关的性质.
    (3)了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组和向量组的秩.
    (4)了解向量组等价的概念,了解向量组的秩与矩阵的秩之间的关系.

4.线性方程组
考试内容

    线性方程组的克拉默法则  齐次线性方程组有非零解的充分必要条件  非齐次线性方程组有解的充分必要条件  线性方程组解的性质和解的结构  齐次线性方程组的基础解系和通解  非齐次线性方程组的通解

考试要求

    (1)掌握克拉默法则.
    (2)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
    (3)理解齐次线性方程组的基础解系及通解的概念.
    (4)理解非齐次线性方程组解的结构及通解的慨念.
    (5)掌握用初等行变换求线性方程组通解的方法.
四.试卷结构和题型
试卷结构
    高等数学    约占80%
    线性代数    约占20%
题型
    填空题            15%
    选择题            15%
    计算题、应用题    60%
    证明题            10%




2004年同济大学
工程硕士研究生入学考试
数学乙考试大纲

一、考试的基本要求

    要求学生比较系统地理解微积分和线性代数的基本概念和基本理论,掌握微积分和线性代数的基本方法.要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析问题和解决问题的能力.

二、考试方法和考试时间

    工程硕士研究生入学数学考试为笔试,考试时间为3小时.

三、考试科目、考试内容和考试要求

考试科目
高等数学、线性代数
按照各专业的不同要求分数学甲、数学乙两种类型.

数学乙
高等数学
1.函数、极限与连续
考试内容

    函数的概念及表示法  函数的有界性、单调性、周期性和奇偶性  复合函数、反函数、分段函数和隐函数  基本初等函数的性质及其图形  初等函数  简单应用问题函数关系的建立  数列极限与函数极限的定义以及它们的性质  函数的左极限与右极限  无穷小和无穷大的概念及其关系  无穷小的性质及无穷小的比较  极限的四则运算  极限存在的两个准则:单调有界准则和夹逼准则  两个重要极限  函数连续的概念  函数间断点的类型  初等函数的连续性  闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理、零点定理)

考试要求

    (1)理解函数的概念,掌握函数的表示方法.
    (2)了解函数的奇偶性、单调性、周期性和有界性.
    (3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
    (4)掌握基本初等函数的性质及其图形.
    (5)会建立简单应用问题中的函数关系式.
    (6)理解极限的概念,理解函数的左极限与右极限的概念,以及极限存在与左、右极限之间的关系.
    (7)掌握极限的性质及四则运算法则.
    (8)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
    (9)理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.
    (10)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
    (11)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理及零点定理)并会应用这些性质.

2.一元函数微分学
考试内容

    导数与微分的概念  导数的几何意义  函数的可导性与连续性之间的关系  平面曲线的切线和法线  基本初等函数的导数  导数与微分的四则运算  复合函数、反函数、隐函数以及参数方程所确定的函数的微分法  高阶导数的概念  某些简单函数的 阶导数    罗尔定理  拉格朗日中值定理  柯西中值定理  泰勒公式  洛必达法则  函数单调性的判定  函数的极值及其求法  函数图形的凹凸性、拐点及渐近线    函数最大最小值的求法及简单应用  弧微分

考试要求

    (1)理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.
    (2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分.
    (3)了解高阶导数的概念,会求简单函数的 阶导数.
    (4)会求分段函数的一阶、二阶导数.
    (5)会求隐函数以及参数方程所确定的函数的一阶、二阶导数,会求反函数的导数.
    (6)理解并会用罗尔定理,拉格朗日中值定理.
    (7)了解并会用柯西中值定理和泰勒中值定理.
    (8)理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法,掌握函数最大最小值的求法及简单应用.
    (9)会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平和铅直渐近线.
    (10)掌握用洛必达法则求未定式极限的方法.

3.一元函数积分学
考试内容

    原函数和不定积分的概念  不定积分的基本性质  基本积分公式  定积分的概念和性质  定积分中值定理  变上限定积分及其导数  牛顿-莱布尼茨公式  不定积分和定积分的换元积分法和分部积分法    反常积分的概念及其计算  定积分的应用

考试要求

    (1)理解原函数,不定积分和定积分的概念.
    (2)掌握不定积分和定积分的基本性质及定积分中值定理,掌握不定积分的基本公式,掌握不定积分和定积分的换元积分法和分部积分法.
    (3)理解变上限定积分定义的函数及其求导定理,掌握牛顿-莱布尼茨公式.
    (4)了解反常积分的概念并会计算反常积分.
    (5)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积,平行截面面积为已知的立体体积等.


4.常微分方程
考试内容

    常微分方程的概念  微分方程的解、阶、通解、初始条件和特解  变量可分离的方程  齐次方程  一阶线性方程  全微分方程 可降阶的高阶微分方程  线性微分方程解的性质及解的结构定理  二阶常系数齐次线性微分方程  简单的二阶常系数非齐次线性微分方程微分方程的简单应用

考试要求

    (1)了解微分方程及其解、阶、通解、初始条件和特解等概念. 
    (2)掌握变量可分离的方程及一阶线性方程的解法. 
    (3)会解齐次方程,全微分方程.  
    (4)会用降阶法解下列方程: , , .
    (5)理解线性微分方程解的性质及解的结构定理. 
    (6)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
    (7)会求自由项为多项式、指数函数,正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解.
    (8)会用微分方程解决一些简单的应用问题. 


线性代数
1.行列式
考试内容

    行列式的概念和基本性质  行列式按行展开定理

考试要求

    (1)了解行列式的概念,掌握行列式的基本性质.
    (2)会应用行列式的性质和行列式按行展开定理计算行列式.

2.矩阵
考试内容

    矩阵的概念  特殊矩阵(单位矩阵,对角矩阵、三角矩阵、对称矩阵)及它们的性质  矩阵的加法  数乘和乘法的计算及性质  矩阵的转置及性质  方阵的幂  方阵乘积的行列式  逆矩阵的概念、性质及求法  矩阵可逆的充分必要条件矩阵的伴随矩阵  矩阵的初等变换  初等矩阵  矩阵等价  矩阵的秩

考试要求

    (1)理解矩阵的概念.
    (2)了解单位矩阵、对角矩阵、三角矩阵、对称矩阵以及它们的性质.
    (3)掌握矩阵的加法、数乘、乘法、转置以及它们的运算规律,了解方阵的幂、方阵乘积的行列式.
    (4)理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆.
    (5)掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

3.向量
考试内容

    向量的概念  向量的线性组合和线性表示  向量组的线性相关和线性无关  向量组的极大线性无关组  等价向量组  向量组的秩  向量组的秩与矩阵的秩之间的关系

考试要求

    (1)理解 维向量的概念,向量的线性组合和线性表示.
    (2)理解向量组的线性相关和线性无关的定义,了解并会用有关向量组的线性相关和线性无关的性质.
    (3)了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组和向量组的秩.
    (4)了解向量组等价的概念,了解向量组的秩与矩阵的秩之间的关系.

4.线性方程组
考试内容

    线性方程组的克拉默法则  齐次线性方程组有非零解的充分必要条件  非齐次线性方程组有解的充分必要条件  线性方程组解的性质和解的结构  齐次线性方程组的基础解系和通解  非齐次线性方程组的通解

考试要求

    (1)掌握克拉默法则.
    (2)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
    (3)理解齐次线性方程组的基础解系及通解的概念.
    (4)理解非齐次线性方程组解的结构及通解的慨念.
    (5)掌握用初等行变换求线性方程组通解的方法.

四.试卷结构和题型
试卷结构
    高等数学    约占80%
    线性代数    约占20%
题型
    填空题            15%
    选择题            15%
    计算题、应用题    60%
    证明题            10%

相关阅读内容

<<<返回上一页 <<<返回网站首页
<<<您的位置:首页>考研咨讯>工程硕士>正文