天津科技大学分子生物学复习总结

本站小编 免费考研网/2015-09-20

第一章绪论
1.1现代分子生物学史中的主要里程碑
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将“性状”与“基因”相耦联,成为分子遗传学的奠基石。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1953年,Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson和Crick因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
1965年,法国科学家Jacob和Monod提出并证实了操纵子(operon)作为调节细菌细胞代谢的分子机制.他们还推测存在一种与DNA序列相互补、能将它所编码的遗传信息带到蛋白质合成场所并翻译产生蛋白质的mRNA(信使核糖核酸).1972年,Paul Berg(美)第一次进行了DNA重组.1977年,Sanger和Gilbert(英)第一次进行了DNA序列分析.
1987年,McClintock由于在50年代提出并发现了可移动遗传因子(jumping gene或称mobile element)而获得Nobel奖。
1993年,美国科学家Roberts和Sharp因发现断裂基因而获得Nobel奖;Mullis由于发明PCR仪而与加拿大学者Smith(第一个设计基因定点突变)共享Nobel化学奖。
此外,Griffith(1928)及Avery(1944)等人关于致病力强的光滑型(S型)肺炎链球菌DNA导致致病力弱的粗糙型(R型)细菌发生遗传转化的实验;1952年, Hershey和Chase:关于DNA是遗传物质的实验;Crick于1954年所提出的遗传信息传递规律(即中心法则);Meselson和Stahl(1958)关于DNA半保留复制的实验;Yanofsky和Brener(1961)年关于遗传密码三联子的设想都为分子生物学的发展做出了重大贡献。
我国生物科学家吴宪20世纪20年代与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有重大影响的研究。
20世纪中下叶,我国科学家相继实现了人工全合成有生物学活性的结晶牛胰岛素,解出了三方二锌猪胰岛素的晶体结构,采用有机合成与酶促相结合的方法完成了酵母丙氨酸转移核糖核酸的人工全合成。
1.2 分子生物学的主要研究内容与基本定理
主要研究内容:一切生物体中的各类有机大分子都是由完全相同的单体,如蛋白质分子中的20种氨基酸、DNA及RNA中的8种碱基所组合而成的。
DNA重组技术(基因工程)基因表达调控(核酸生物学)
生物大分子结构功能(结构分子生物学)
基本定理:
1.构成生物体有机大分子的单体在不同生物中都是相同的;
2.生物体内一切有机大分子的建成都遵循着各自特定的规则;
3.某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。
研究技术
1)DNA重组技术
是20世纪70年代初兴起的技术科学,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。
2)基因表达调控研究
蛋白质分子控制了细胞的一切代谢活动,而决定蛋白质结构和合成时序的信息都由核酸(主要是脱氧核糖核酸)分子编码,所以,基因表达实质上就是遗传信息的转录和翻译过程。
3)结构分子生物学研究
三维结构及其运动规律,研究生物大分子特定的空间结构及结构的运动变化与其生物学功能的关系。X射线衍射的晶体学(又称蛋白质晶体学)二维和多维核磁共振法液相结构电镜三维重组、电子衍射、中子衍射和各种频谱学方法研究生物高分子的空间结构。
一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提:
拥有特定的空间结构(三维结构);
在它发挥生物学功能的过程中必定存在着结构和构象的变化。
1.3 证明DNA就是遗传物质的主要历史事件
多少年来,人们反复提出的几个与一切生命现象有关的问题:
1)生命是怎样起源的?
2)为什么“有其父必有其子”?
3)动、植物个体是怎样从一个受精卵发育而来的?
1847年,Schleiden和Schwann提出“细胞学说”,证明动、植物都由细胞组成。
孟德尔在1857年到1864年间,用豌豆做杂交试验,孟德尔总结出生物遗传的两条基本规律:第一,当两种不同植物杂交时,它们的下一代可能与亲本之一完全相同,他把这一现象称为统一律。孟德尔认为,生物的每一种性状都是由遗传因子控制的,这些因子可以从亲代到子代,代代相传。
遗传因子在体细胞内是成对存在的,一个来自父本,一个来自母本,只有在形成配子时单独存在。有些遗传因子以显性(dominant)形式存在,能在杂种一代得到表达;有些因子呈隐性(recessive)状态,只有当父、母本同时含有这一因子时,才得到表现。
第二,将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例发生分离,因而具有不同的形式,他把这一现象称为分离规律。
在孟德尔遗传学基础上,Morgan又提出了基因学说。1910年,Morgan和他的助手们发现了第一只白眼雄果蝇,称为突变型。正常情况下,果蝇都是红眼的,称为野生型。Morgan将白眼雄果蝇与红眼雌果蝇交配,所产生的F1代不论雌雄,全为红眼果蝇(孟德尔的统一规律!)
这些F1果蝇互相交配所产生的F2有红眼也有白眼,但所有白眼果蝇都是雄性的,说明该性状与性别有联系。Morgan的这一连锁遗传规律与孟德尔的遗传性状独立分离规律是背道而驰的!当所研究的两个基因位于同一染色体上而又距离较近时,Morgan的连锁遗传规律起主导作用。当所研究的两个基因位于不同染色体上时,孟德尔的独立分离规律起主导作用。
1928年,英国科学家Griffith等人发现,具有光滑外表的S型肺炎链球菌能使小鼠发病,具有粗糙外表的R型细菌没有致病力。荚膜多糖能保护细菌免受动物白细胞的攻击。首先用实验证明基因就是DNA分子的是美国著名的微生物学家Avery。他首先将光滑型致病菌(S型)烧煮杀灭活性以后再侵染小鼠,发现这些死细菌自然丧失了致病能力。
美国冷泉港卡内基遗传学实验室科学家Hershey和他的学生Chase在1952年从事噬菌体侵染细菌的实验。噬菌体专门寄生在细菌体内,它的头、尾外部都是由蛋白质组成的外壳,头内主要是DNA。
噬菌体侵染细菌的主要过程如下:①噬菌体尾部的末端(基片、尾丝)吸附在细菌表面;②噬菌体通过尾轴把DNA全部注入细菌细胞内,噬菌体的蛋白质外壳则留在细胞外面;③利用细菌的生命过程合成噬菌体自身的DNA和蛋白质;④用新合成的DNA和蛋白质组装成与亲代完全相同的子噬菌体;⑤细菌解体,释放子代噬菌体,侵染其他细菌。
第二章 染色体与DNA   Crick的中心法则(central dogma)
分子生物学研究已经证实,DNA控制了生物的性状遗传。
无论DNA或RNA,都是由许许多多个核苷酸连接而成的生物大分子,而每个核苷酸又由磷酸、核糖和碱基3部分组成。
2.1染色体
2.1.1染色体—遗传物质的主要载体
染色体在遗传上起着主要作用,因为亲代能够将自己的遗传物质以染色体(chromosome)的形式传给子代,保持了物种的稳定性和连续性。
染色体包括DNA和蛋白质两大部分。
同一物种内每条染色体所带DNA的量是一定的,但不同染色体或不同物种之间变化很大,人X染色体有1.28亿个核苷酸对,而Y染色体只有0.19亿个核苷酸对。
2. 1. 2 真核细胞染色体的组成
作为遗传物质,染色体具有如下特征:
①分子结构相对稳定;
②能够自我复制,使亲子代之间保持连续性;
③能够指导蛋白质的合成,从而控制整个生命过程;
④能够产生可遗传的变异。
2. 1. 2. 1 蛋白质
染色体蛋白主要分为组蛋白和非组蛋白两类
真核细胞的染色体中,DNA与组蛋白的质量比约为1:1。DNA、组蛋白和非组蛋白及部分RNA(尚未完成转录而仍与模板DNA相连接的那些RNA,其含量不到DNA的10%)组成了染色体。
组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。H2A、H2B介于两者之间。
组蛋白特性:
1、进化上的极端保守性。不同种生物组蛋白的氨基酸组成十分相似。牛、猪、大鼠的H4氨基酸序列完全相同,与豌豆序列相比也只有两个氨基酸的差异。
2、无组织特异性只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白。
3、肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合。
4、存在较普遍的修饰作用,如甲基化、乙基化、磷酸化及ADP核糖基化等。修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上。
非组蛋白特性:
约为组蛋白总量的60%~70%,可能有20~100种(常见的有15~20种),主要包括酶类、与细胞分裂有关的收缩蛋白、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白、微管蛋白、原肌蛋白等。
2.1.2.2. DNA
真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象(C-value paradox)”。
所谓C值,通常是指一种生物单倍体基因组DNA的总量。
真核细胞DNA序列可被分为3类:
1、不重复序列  在单倍体基因组里,这些序列一般只有一个或几个拷贝,它占DNA总量的10%~80%。不重复序列长约750~2 000bp,相当于一个结构基因的长度。蛋清蛋白、蚕的丝心蛋白、血红蛋白和珠蛋白等都是单拷贝基因。
2、中度重复序列   这类序列的重复次数在101~104之间,占总DNA的10%~40%,如小鼠中占20%,果蝇中占15%,各种rRNA、tRNA以及某些结构基因如组蛋白基因等都属于这一类。
3、高度重复序列——卫星DNA   只存在于真核生物中,占基因组的10%~60%,由6~100个碱基组成,在DNA链上串联重复高达数百万次。因为卫星DNA不转录,其功能不详。它们是异染色质的成份,可能与染色体的稳定性有关。
特定DNA
在动物卵细胞形成过程中,rDNA可进行几千次不同比例的复制,产生2×106个拷贝,使rDNA占卵细胞DNA的75%,从而使该细胞能积累1012个核糖体,以合成大量蛋白质供细胞分裂之需。
2. 1. 2. 3 染色质和核小体
由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。
依据
染色质DNA的Tm值比自由DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用。在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA复制和转录活性大大低于在自由DNA中的反应。
DNA酶I(DNaseI)对染色质DNA的消化远远慢于对纯DNA的作用。用小球菌核酸酶处理染色质以后进行电泳,便可以得到一系列片段,这些被保留的DNA片段均为200bp基本单位的倍数。
Nucleosome(核小体) 是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体组成
DNA + Histoneoctamer(组蛋白八聚体) →Nucleosomecore (核小体核心146bp) + H1→Chromatosome(染色小体166bp) + linker DNA →Nucleosome(核小体) (~200 bpof DNA)
2. 1. 3 原核生物基因组
原核生物的基因组很小,大多只有一条染色体,且DNA含量少,如大肠杆菌DNA的相对分子质量仅为4.6×106bp,其完全伸展总长约为1.3mm,含4000多个基因。
原核生物基因主要是单拷贝基因,只有很少数基因〔如rRNA基因〕以多拷贝形式存在;整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。
原核细胞DNA特点:


相关话题/分子生物学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 2015年研究生考试  东北大学(初试)    分子生物学  回忆版
    2015年研究生考试 东北大学(初试) 分子生物学 回忆版 分子:题型有名词解释、简答、问答 一、名词解释(5分10个): 编码链,SNP,细菌转化,翻译,癌症,DNA聚合酶,冈崎片段,顺反子,复制叉,基因, 二、简答(7分10个): 1、原位杂交原理, 2、蛋白质合成的过程, 3、半保留复制的过程, 4、 ...
    本站小编 免费考研网 2015-09-05
  • 辽宁医学院分子生物学复习题
    2011分子生物学复习题 一、选择题: 1)、单项选择题 1、证明DNA是遗传物质的两个关键性实验是:肺炎链球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。这两个实验中主要的论点证据是: (a)从被感染的生物体内重新分离得到DNA,作为疾病的致病剂 (b)DNA突变导致毒性丧失 (c)生物体吸收的外源DNA(而并 ...
    本站小编 免费考研网 2015-07-30
  • 山东师范大学分子生物学期末考试重点整理
    1.核小体结构? 2.核糖体活性位点? 3.DNA二级结构? 4.原核生物与真核生物基因组的差异 5.维持DNA双螺旋稳定性因素? 6.原核生物中的DNA聚合酶(大肠杆菌) 7.真核生物的RNA聚合酶Ⅱ的启动子结构特点? 8.转座发生的机制、类型、遗传学效应 9.证明遗传物质是核酸的实验依据是什么? 10.设计实验证明DNA的半保留复制 ...
    本站小编 免费考研网 2015-07-19
  • 2015山东师范大学分子生物学期末考试回忆
    山东师范大学 2015年分子生物学试题回忆 一、判断(201) 二、名词解释(64) 滚环复制 同工tRNA 弱化子 基因芯片 TBP 增强子 三、简答(48) 1、真核与原核基因组的区别? 2、转录因子是什么?DNA结合域的特点? 3、什么是RNA剪接?什么RNA编辑?生物学意义是什么? 4、什么基因印记?DNA的 ...
    本站小编 免费考研网 2015-07-19
  • 沃森《基因的分子生物学》与朱玉贤《现代分子生物学》要点合并
    原核 真核 DNA结构 1.双链,双螺旋(H键,碱基堆积力) 2.碱基互补配对,含T 3.碱基可以外 ...
    本站小编 网络资源 2015-07-16
  • 中科院612生物化学与分子生物学14年5年真题
    2015中国科学院大学612《生化与分子生物》 一、名词解释(5*4) 流动镶嵌模型 糖酵解 严紧控制 酶专一性 小分子干扰RNA 二、单选(1*20) 印象当中好像都没见过 而且考的东西很细 个人认为有点偏 三、判断题(1*30) 好像也没什么太多重复的 四、简答题(4*5) 1、细胞膜结构在代谢中的作用 2、基因敲除与RNA干 ...
    本站小编 免费考研网 2015-07-15
  • 2015年华中科技大学《生化与分子生物学》考研真题
    2015年华中科技大学《生化与分子生物学》考研真题(回忆版) 一、写出下列名词对应的中文并解释(每题8分) 1.configurationconformation2.structuraldomainsuper-secondarystructure 3.allostericeffecthyperchromiceffect4.liposomeribosome 5.molecularchaperonemolecularhybridization6.ORFARS 7.transposit ...
    本站小编 网络资源 2015-07-14
  • 分子生物学重要概念解释
    分子生物学重要概念解释 A Abundance (mRNA 丰度):指每个细胞中mRNA 分子的数目。 Abundant mRNA (高丰度mRNA):由少量不同种类mRNA组成,每一种在细胞中出现大量拷贝。 Acceptor splicing site (受体剪切位点):内含子右末端和相邻外显子左末端的边界。 Acentric fragment (无着丝粒片段):(由打断产生的)染色体无着 ...
    本站小编 网络资源 2015-07-08
  • 武汉大学分子生物学题库
    GLOSSARY Abundance of an mRNA is the average number of molecules per cell. Abundant mRNAs consist of a small number of individual species, each present in a large number of copies per cell. Acceptor splicing sitesee right splicing junction. Acentric fragment of a chromosome (generated by ...
    本站小编 免费考研网 2015-06-21
  • 浙江大学2013-2014分子生物学考试考研真题回忆
    涂鑫韬 2012级生物科学 2013-2014 分子生物学甲 回忆 一、翻译(25选20) Nucleosome Telomerase Deoxyribonucleic Acid Ribosome In vivo Eukaryote Transcrption Reconbination PTGS Epigenetics SnRNP RNAi 沉默复合体 同尾酶 转录后基因沉默 蛋白质组学 功能基因组学 荧光共振能量传递 开放阅读框 ...
    本站小编 免费考研网 2015-06-06