2014考研数学:高等数学上册复习重点串讲

海文教育 /2014-01-15

通过对2014年最新考研数学大纲的研读,下面为各位备考的同学进行重点知识串讲,以帮助同学们了解重点,有针对性的进行备考复习。

  第一章  函数、极限与连续

  本章函数部分主要是从构建函数关系,或确定函数表达式等方面进行考查. 而极限作为高等数学的理论基础,不仅需要准确理解它的概念、性质和存在的条件,而且要会利用各种方法求出函数(或数列)的极限,还要会根据题目所给的极限得到相应结论. 连续是可导与可积的重要条件,因此要熟练掌握判断函数连续性及间断点类型的方法,特别是分段函数在分段点处的连续性. 与此同时,还要了解闭区间上连续函数的相关性质(如有界性、介值定理、零点定理、最值定理等),这些内容往往与其他知识点结合起来考查。

  本章的知识点可以以多种形式 (如选择题、填空题、解答题均可)考查,平均来看,本章内容在历年考研试卷中数学一、数学三大约占10分,数学二大约占19分。

  本章重要题型主要有:1、求极限;2、已知极限反求参数;3、无穷小阶的比较;4、间断点类型的判断。

  第二章  一元函数微分学

  本章按内容可以分为两部分:第一部分是导数与微分,主要涉及微分学的基本概念、可导性与可微性的讨论,以及导数和微分的计算。此部分一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚;同时要能熟练求一元复合函数、反函数、隐函数、由参数方程所确定函数的二阶导数。第二部分是微分中值定理及导数的应用,主要是利用导数研究函数的性态,以及利用中值定理证明或解决一些问题。这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点,还有一个难点,就是关于微分中值定理,关于这一部分的证明题,需要大家掌握常见的解题思路。

  有关可导性、可微性、导数和微分的计算以及导数的应用,可以结合其他知识点以任何形式出题. 而微分中值定理常用在解答题中,特别是用于证明有关中值的等式或不等式。平均来看,本章内容在历年考研试卷中数学一大约占12分,数学二大约占36分,数学三大约占10分。

  本章重要题型有:1、导数定义和几何意义;2、复合函数、反函数、隐函数和参数方程所确定的函数的求导;3、含中值等式或不等式的证明;4、利用导数研究函数的形态(判断单调、求极值与最值、求凹凸区间与拐点);5、方程的根的个数的讨论;6、渐近线;7、求边际和弹性(数三)。

  第三章  一元函数积分学

  本章内容中,不定积分和定积分是积分学的基本概念,不定积分和定积分的计算是积分学的基本计算,利用定积分表示并计算一些几何、物理、经济量是积分学的基本应用。这一部分要特别注意变限积分,它的各种性质都是我们考查的重点。变上限积分函数跟微分方程结合的一个点也可以出题的。还有定积分的应用,求平面图形面积,求旋转体的体积,一定要熟悉,要掌握好微元法。

  本章对概念部分的考查主要是出现在选择题中,对运算部分的考查通常出现在填空题和解答题中,而定积分的应用和有关定积分的证明题大多出现在解答题中。平均来看,本章内容在历年考研试卷中,数学一大约占15分,数学二大约占33分,数学三大约占20分。

  本章重要题型有:1、不定积分、定积分和反常积分的基本运算;2、定积分等式或不等式的证明;3、变上限积分的相关问题;4、利用定积分求平面图形的面积和旋转体的体积。

  第四章  向量代数与空间解析几何(数一)

  本章内容不是考研重点,很少直接命题。直线与平面方程是多元函数微分学的几何应用的基础,常见二次曲面的图形被应用到三重积分、曲面积分的计算中,用于确定积分区域。

  以上是我们对于高数部分上册重点考点的一些总结,希望能助大家一臂之力。最后祝广大考生复习顺利,考研成功


相关话题/高等数学

閹存劒璐熺拠鍙ュ敩鐞涱煉绱濋崚鍡曢煩鐠囧墽鈻肩挧鍕灐闁剧偓甯寸亸杈厴閼惧嘲褰�40%閹绘劖鍨氱挧姘舵尪閿涳拷
閹恒劌绠嶇挧姘舵尪閺夊啰娉妴鍌濐嚦娴狅綀銆冮崣顖炩偓姘崇箖娴滄帟浠堢純鎴犵搼闁柨绶炴稉鐑樻拱缁旀瑦甯归獮鍨吅娴肩姭鈧钒IP娴兼艾鎲抽垾婵撶礉閻€劍鍩涢柅姘崇箖鐠囧彞鍞悰銊ф畱閸掑棔闊╅柧鐐复閹存牗鎹i幎銉ㄥ枠娑旀澘鎮楅敍宀冾嚦娴狅綀銆冮懢宄板絿40%閹绘劖鍨氶妴鍌濐嚦娴狅綀銆冪拹顓濇嫳閺堫剛鐝禒璁崇秿娴溠冩惂閿涘苯娼庢禍顐㈠綀9閹舵ǜ鈧倸鐨㈤崚鍡曢煩闁剧偓甯撮妴浣规崳閹躲儱娴橀悧鍥╃搼閿涘苯褰傞崚鏉款劅閺嵚ゎ啈閸ф稏鈧胶娅ㄦ惔锕佸垱閸氀佲偓浣镐簳閸楁哎鈧礁浜曟穱掳鈧傅Q缁屾椽妫块妴浣虹叀娑斿簺鈧浇鐪撮悺锝囩搼閸氬嫬銇囬獮鍐插酱閵嗭拷