万丈高楼平地起,学习亦是如此。纵观2015年研究生入学考试题目竟然高达90%的题目都是基础题,可以说只要掌握基础的解题技巧、解题方法,今 年的考试拿到120分应该不成问题。现在大部分考生都是在校生,所以这个寒假也是一个前期复习的最佳时机。同时,很多同学对现在基础阶段数学该如何复习, 高数该从哪里入手学习之类的问题较为迷茫,跨考教育数学教研室赵睿老师认为,在基础阶段的复习中,不管哪一科,唯一的目标就是打牢基础,关于高等数学复习给同学们以下参考意见。
一、考研高等数学复习计划及资料选择
高等数学这门课在数学一和数学三中占56%,在数学二中比例高达78%,因此高数在考研中的重要性是不言而喻。那么一本靠谱的基础阶段复习资料 就是很重要的。首先,高等教育出版社的《数学考试大纲》或者《大纲解析》是必要的。因为考生必须要明确目标,包括考试的范围,考试的难度,这样才能做到有 的放矢。
其次,就是高数的复习资料。在本阶段,我们只需要准备一套高等数学的教材及习题解答即可。这个教材普遍使用的是同济六版的《高等数学》,此书定理证明,例题思路都非常清楚,而且课后习题也很有层次,有些是可以经过改动直接放到考试真题中的。
因为高数的难度以及繁多的内容,要求我们数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。
以下是对高等数学的复习计划。
第一章 函数与极限(10天)
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是 极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
第二章:导数与微分(7天)
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
第三章:微分中值定理与导数的应用(8天)
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
第四章:不定积分(7天)
积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
第五章: 定积分(8天)
定积分是微积分七大积分的基础,要理解微元法,理解以“以常代变”的这种思想。定积分的计算公式“牛顿-莱布尼兹”是我们微积分的核心,要会证明。
第六章:定积分的应用(5天),
定积分的几何应用,是所有同学都需掌握的;物理应用数三的同学不需掌握。
第七章:空间解析几何(3天)
本章主要理解向量之间的关系,会写平面、直线、二次曲面的方程,为后面重积分做准备。
第八章:多元函数微分法及其应用 ( 7天)
在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,掌握计算不同函数的各种方法及应用中的会求条件或无条件极值。
第九章:重积分(7天)
在一元函数积分学中,定积分是某种确定形式的和的极限,这种和的极限的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念,本章主要介绍重积分(包括曲线曲面积分)的概念、计算方法以及它们的一些应用,重点是会计算。
第十一章:无穷级数(7天)
这一部分和之前的知识联系不那么紧密,是从思维方式上的一个改变。本章学习的时候一定要分类总结,对于数项级数,分清不同的级数适用的判定方法;对于函数项级数,会求和函数、收敛域。
第十二章 常微分方程 (9天)
常微分方程的研究对象就是常微分方程解的性质与求法,本章主要有两个问题,一是根据实际问题和所给条件建立含有自变量、未知函数及未知函数的导 数的方程及相应的初始条件;二是求解方程,包括方程的通解和满足初始条件的特解。学习的切入点是,看到方程分辨出方程的类型,其次再谈它的解法,因为不同 的方程解法不同。
文章来源:跨考教育