考研数学:必考的定理证明整理(2)

本站小编 免费考研网/2016-05-29

考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号——考生需重视教材中重要定理的证明。下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。

三、微积分基本定理的证明

该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上 限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区 间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在 开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

“牛 顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成, 从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公 式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在 闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成 立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用 原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差 个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

四、积分中值定理

该 定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明? 可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存 在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。

若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。

若 顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常 数A。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还 是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的A。

接 下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数A位于函数在闭区间上的最大值和最小值之间,结论是 该实数能被取到(即A为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区 间长度这个实数位于函数的最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。

定理证明确属难点,但几乎没有考生敢于不去复习这部分,因为一旦考出来就是大题,且在没复习的情况下当场做出的可能性很小。在此提醒2017的考研学子,掌握好以上梳理的重要定理的证明,是通往高分的必经之路。


相关话题/定理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 考研数学:必考的定理证明整理(1)
    考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号考生需重视教材中重要定理的证明。下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。一、求导公式的证明2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较 ...
    本站小编 免费考研网 2016-05-29
  • 中值定理:基础阶段掌握到何种程度?
      考研数学考查的一项基本能力是逻辑推理能力,其实就是证明问题的能力。那如何考查呢?基本上有如下几个出题的方向:等式的证明、不等式的证明以及中值定理的证明。下面,跨考教育数学教研室邵伟如老师就为大家介绍该如何掌握,掌握到何种程度才能为之后的复习打下坚实基础。  提到中值定理大家第一反应是头疼,根本不 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 考研数学:微分中值定理
      考研数学中,微分中值定理是重难点。利用微分中值定理来证明与区间内某点出导数值有关的问题是考研当中的常考题型,这种类型的题大都以综合题的形式出现的。以下,跨考教育数学教研室吴方方老师就着重讲解微分中值定理。  考研当中对于这一部分的题目十之六七是用罗尔定理来证明的。关于罗尔定理,首先我们一定要掌握 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 2016年考研数学大纲解析之中值定理
      2016年考研大纲已发布,关于考研数学中中值定理的证明依然很重要。它的相关证明是考研数学中公认的重点和难点,往年这部分的常考证明题这种大题。然而最近两年没考这一部分大题。2014年的高数证明题考的函数不等式的证明,而2015出乎意料地考了一个用导数定义证明求导公式的证明题。虽然这两年没有考这部分 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 2016考研数学重难点:微分中值定理
     考研数学中,微分中值定理是重难点。利用微分中值定理来证明与区间内某点出导数值有关的问题是考研当中的常考题型,这种类型的题大都以综合题的形式出现的。以下,跨考教育数学教研室吴方方老师就着重讲解微分中值定理。  考研当中对于这一部分的题目十之六七是用罗尔定理来证明的。关于罗尔定理,首先我们一定要掌握罗 ...
    本站小编 跨考教育 2015-04-24
  • 2016考研数学:基础期中值定理备考说明
     考研数学考查的一项基本能力是逻辑推理能力,其实就是证明问题的能力。那如何考查呢?基本上有如下几个出题的方向:等式的证明、不等式的证明以及中值定理的证明。下面,跨考教育数学教研室邵伟如老师就为大家介绍该如何掌握,掌握到何种程度才能为之后的复习打下坚实基础。  提到中值定理大家第一反应是头疼,根本不知 ...
    本站小编 跨考教育 2015-04-24
  • 2015数学大纲解析六 微分中值定理
    大家好,我是跨考教育集团数学教研室的向喆老师。在2014-9-13日,2015年考研数学大纲正式发布。众所周知,考研大纲是学生复习的依据。所以,我将对考纲涉及的重要考点进行深度的分析,希望对广大考生的后期备考有帮助。  首先说下我对大纲解析的整体安排。由于每年数学考纲比较稳定:题型分布,知识点分布大致相同。所以我重点来解析下考纲要求的重要考点的复习方法,我分7次来说明。第一次说明极限计算的学习方法,第二次说明微分中值定理学习方法,第三次说明不等式证明和方程根个数问题学习方法,第四次说明一元函数积分计算学习方法,第五次说明定积分应用学习方法,第六次说明多元函数积分学学习方法,第七次说明级数学习方法。  今天我 ...
    本站小编 新浪教育 2014-12-21
  • 中值定理总结
    恩,谢谢楼主,顶一下-----------------------------------------------------------------楼主很强大啊------------------------- ...
    免费考研论坛 2011-11-29
  • 中值定理总结
    嗯,不足道我的感觉是不是准确,这个其实没什么用,还是谢谢楼主了------------------------------------------------------------- ...
    免费考研论坛 2011-11-29
  • 中值定理总结
    -----------------------------------------------------------------2011数学考研大纲--------------------------------------- ...
    免费考研论坛 2011-11-29