新托福阅读复习材料:美国科学文摘精选(二)(3)
考研 Freekaoyan.com/2008-03-12
The Lithosphere & Plate Tectonics
Oceanic Lithosphere
The rigid, outermost layer of the Earth comprising the crust and upper mantle is called the lithosphere. New oceanic lithosphere forms through volcanism in the form of fissures at mid-ocean ridges which are cracks that encircle the globe.
Heat escapes the interior as this new lithosphere emerges from below. It gradually cools, contracts and moves away from the ridge, traveling across the seafloor to subduction zones in a process called seafloor spreading. In time, older lithosphere will thicken and eventually become more dense than the mantle below, causing it to descend (subduct) back into the Earth at a steep angle, cooling the interior. Subduction is the main method of cooling the mantle below 100 kilometers (62.5 miles). If the lithosphere is young and thus hotter at a subduction zone, it will be forced back into the interior at a lesser angle.
Continental Lithosphere
The continental lithosphere is about 150 kilometers (93 miles) thick with a low-density crust and upper-mantle that are permanently buoyant. Continents drift laterally along the convecting system of the mantle away from hot mantle zones toward cooler ones, a process known as continental drift. Most of the continents are now sitting on or moving toward cooler parts of the mantle, with the exception of Africa. Africa was once the core of Pangaea, a supercontinent that eventually broke into todays continents. Several hundred million years prior to the formation of Pangaea, the southern continents - Africa, South America, Australia, Antarctica, and India - were assembled together in what is called Gondwana. Plate Tectonics
Crustal Plate Boundaries
(Courtesy NGDC)
Plate tectonics involves the formation, lateral movement, interaction, and destruction of the lithospheric plates. Much of Earth's internal heat is relieved through this process and many of Earth's large structural and topographic features are consequently formed. Continental rift valleys and vast plateaus of basalt are created at plate break up when magma ascends from the mantle to the ocean floor, forming new crust and separating midocean ridges. Plates collide and are destroyed as they descend at subduction zones to produce deep ocean trenches, strings of volcanoes, extensive transform faults, broad linear rises, and folded mountain belts. Earth's lithosphere presently is divided into eight large plates with about two dozen smaller ones that are drifting above the mantle at the rate of 5 to 10 centimeters (2 to 4 inches) per
year. The eight large plates are the African, Antarctic, Eurasian, Indian-Australian, Nazca, North American, Pacific, and South American plates. A few of the smaller plates are the Anatolian, Arabian, Caribbean, Cocos, Philippine, and Somali plates.
Views of the Solar System Copyright © 1997-2001 by Calvin J. Hamilton. All rights reserved. Privacy Statement.