几何教学心得体会
如何培养学生的几何直观能力几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
希尔伯特曾说过:“图形可以帮助我们刻画描述数额学问题,图形可以帮助我们找到解决数学问题的思路,图形能帮助我们理解和记忆所得到的数学结果。” 因此我认为培养学生的几何直观能力是非常有必要的。下面我就从几个方面浅谈如何培养学生的几何直观能力。
首先,在教学中使学生逐步养成画图的好习惯。我根据不同年级制定了相应的目标,在解决问题时先要画一画图,以便学生更好的理解和掌握。对于低年级学生,对线段图教学的具体要求以放低些,只需看得懂点子图和线段图就行了。对于中高年级学生,要求他们会采用线段图分析题意,理清数量关系,以便解决实际问题。
其次,重视变换—让图形动起来。几何变换或图形的运动既是学习的对象,也是认识数学的思想和方法。在数学中,我们接触的最基本的图形都是对称图形,例如圆、正多边形、长方体、长方形、菱形、平行四边形等;另一方面,在学习非对称图形时,又往往是运用这些对称图形为工具的。变换又可以看作运动,让图形动起来是指再认识这些图形时,在头脑中让图形运动起来,例如,平行四边形是一个中心对称图形,可以把它看作一个刚体,通过围绕中心(两条对角线的交点)旋转180度,去认识、理解、记忆平行四边形的其他性质。充分地利用变换去认识、理解几何图形是建立几何直观的好办法。
第三,学会从“数”与“形”两个角度认识数学。低年级学生年龄小,理解能力有限,学习应用题有一定难度。在这种情况下,要善于引导学生画出点子图表示题中的数量,使得数量关系更直观形象,从而让解决问题化难为易,化繁为简,简单易学。最后,掌握、运用一些基本图形解决问题。
因此,教师在解决问题时,要充分考虑线段图的有机运用,让线段图真正成为学生解决问题的制胜法宝,也就是要注重培养学生的几何直观能力。