浅谈中学数学教学中电教手段的运用
浅谈中学数学教学中电教手段的运用[内容摘要]电教手段的应用有利于体现数形结合的数学思想方法、有利于突破教学难点、有利于动态地显示给定的几何关系;充分利用电教手段安排课堂教学结构,还有助于发挥学生的主体作用;运用电教手段进行教学,可创设愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学。
[关键词]电教手段、数形结合
当前,信息技术飞速发展,知识经济已见端倪,我们已经进入了21世纪,面临人类文明史上的又一大飞跃--由工业化社会进入到信息化社会。21世纪,既为我们带来新的机遇,也为我们带来新的挑战--世界各国将迎来更为激烈的国际竞争。21世纪的竞争,是经济实力的竞争,科学技术的竞争,归根结底是人才的竞争,而人才的竞争取决于教育。为此,世界各国对当前教育的发展及信息技术在教育中的应用都给予了前所未有的关注,都试图在未来的信息社会中让教育走在前列,以便在国际竞争中立于不败之地。如此的竞争态势是对教育的严峻挑战,现代教育技术在迎接这场挑战中将起到关键的作用。因此,我国教育部不失时机地提出:要把现代教育技术(主要指电教手段)当作整个教育改革的"制高点"和"突破口"。
应用电教手段改善和提高教学效果是当前教学改革的一个方向,一方面它提供外部刺激的多样性有利于知识的获取,另一方面人机对话有利于激发学生的学习兴趣和认知主体作用的发挥。
影响数学学习的心理素质主要有:求知欲望、意志力、动机和兴趣、自信心等,因此,在课堂教学中运用电教手段进行教学,可有效地开启学生思维的闸门,激发联想,激励探索,为一堂课的成功铺下基石。
1、电教手段的应用有利于体现数形结合的数学思想方法
高中解析几何是综合运用代数和几何知识的一门综合性的学科,其特点之一是数和形的紧密结合,即利用方程的性质来研究相应的几何图形的特点,使几何图形及其研究实现了"代数法"。反之,如果给代数问题以几何解释,那么可以理解代数问题的直观意义,解析几何的另一个基本特点是把曲线(包括直线)看作是按一定的几何条件运动的集合,以运动、变化的观点来研究它的性质,所以具有数形结合的思想,运动变化的辨证观点是学好解析几何的关键。
电教手段应用于解几教学应是在教学过程中充分揭示教学内容中内在辨证关系,逐步使学生养成运用上述思想和观点去分析和解决问题的习惯,从而深刻地理解和掌握教学内容的实质。基于此,应主动有效地设计出"数、形动态"演示特点,赋予它特有的魅力。即能够迅速改变变数,同步达到屏幕图形的变化,或屏幕图形的渐变;窗口同步显示变数的变化,并且演示过程可以根据需要进行控制,演示速度可任意调整;可以随时看到各种情形下的数量变化或不变,图形的动或静,把"数"和"形"的潜在关系动态地显示出来。这样教师根据呈现的内容有针对性地加以讲解或组织讨论,引导学生根据内容提出的各种变数来观察、验证、对比、寻找一般规律和特殊属性。使学生能加深对几何图形的感知,敏锐地抓住变化特征,真正地将现代科技应用于辅助教学。
比如线段的定比分点概念的教学,对此概念的学习主要要引导学生深刻认识到定比分点的概念的成因是为了有效地确定线段的唯一分点P的位置,和引入λ值的意义,即在直线、线段上唯一分点P使得有向线段的比值λ与实数对形成了一一对应的关系,进而理解定比分点的实质是通过线段的比"代数化"来确定P点的位置。可让学生积极寻找、分析、修正各种解决问题的方案。设计思路:在屏幕上显示有向直线l,在l上设置两固定点P1、P2和一个动点P,开设变化值λ窗口,对于特殊点的位置,如P1、P2点,预先设置λ对应值(0及不存在)。动点P可用鼠标拖动,动态显示时,窗口同步显示相应λ数值。拖动的速度可自由控制,可快可慢,可停留于某个点。学生可亲手动手演示操作,使直线l时间各种特殊点:P1点、P2点、P1P2中点、P1P2的各种内分点、外分点等的位置与λ值关系显露出来。这样分点变化引起线段的比的变化特征,确实是直观、明显、连续、完整、精确,充分地揭示"形"(线段)与"数"(线段比)的一一对应关系。
2、电教手段的应用有利于突破教学难点
这种精巧的构思辅助教学的方式既是进行验证、探索的极好工具,又是创设"情景"的好帮手。它使数学许多内容推陈出新,教学面貌焕然一新,重点善于把握、难度易以突破、关键易于抓住。
比如在上抛物线的定义这个概念之前,我们认真研究了三个问题:①教材是怎样引进概念的,怎样扩展内容的;②怎样设计具有启发性的问题,引导学生积极探索新知;③怎样有效组织获取知识过程的教学。
因此,对此课件的设计着力于展示概念的形成、发展过程,揭示本质属性。对此概念的学习主要要引导学生形象地认识到抛物线的概