数学教学论文
拓展双基 谋求发展摘 要:“双基教学”构成中国数学教学的主要特征。它倡导变式教学、注重实质、倾向接受学习、重视问题解决等特征支撑着传统的课堂教学模式。修订后的《课标》将“双基”拓展到“四基”,但并没有消弱或淡化“双基”地位。“双基”必须夯实,寻求突破与发展。
关键词:双基;变式教学;接受学习
中国数学教学的主要特征是“双基教学”。数学“双基”指“数学基本知识”和“数学基本技能”,“基础知识和基本技能在一个人的一生中始终是非常重要的。”张奠宙,戴再平两位教授以更大的视角合理地解释和肯定中国特色“双基数学教学”。中国的双基教学亦力求已有成就,在课堂教学中获得基础和发展的平衡。基础需要与时俱进,重新审视课程改革,修订的《课标》拓延了数学“双基”,提出“四基”——基础知识,基本能力,基本思想,基本活动经验。本文尝试从“双基”的内涵和价值谈谈如何在“双基”之上谋求学生更大发展。
一、继承双基传统,记忆知识,演练技能
“华人学习者如何能在学业成绩上如此成功(经常比西方的同龄人好很多),而他们的教和学看上去却是死记硬背的取向?” 这就是通常说的华人学习者悖论。“双基数学教学”是解释“中国数学学习者悖论”的关键。
长期以来,数学双基的定义是:数学基本知识和基本技能,这不必也不能更改。但是,“数学双基教学”作为一个特定的名词,其内涵不只限于双基本身,还包括在数学“双基”之上的发展。启发式、精讲多练、变式练习、提炼数学思想方法等,都属于“发展”的层面,却又和“数学双基”密切相关。它在教育学上主张:运算速度——速度导致效率;程序记忆——记忆通向理解;精确表示——逻辑保证精确;练习操作——重复依靠变式。因此,中国数学双基教学,是关于如何在“双基”基础上谋求学生发展的教学理论。这种发展是有效的,但也是有局限的。继承“双基”数学教学的传统优势,并克服“双基”数学教学本身存在的局限,是当前数学教学的关键所在。
张奠宙教授在《中国数学双基教学理论框架》一文中分析提出双基特征:
1.记忆通向理解。西方的一些教育理论强调理解,忽视记忆。实际上,没有记忆就无法理解,理解是记忆的综合。数学双基强调必要的记忆。例如,九九表的记忆与背诵,使之成为一种算法直觉,计算的条件反射.理解不能孤立进行,对一些数学运算规则,能够理解的当然要操练,一时不能理解的也要操练,在操练中逐步加深理解。
2.速度赢得效率。西方的一些教育理论,认为数学只要会做就可以,速度不必强调。数学双基教育理论认为,只有把基本的运算和基础的思考,化为直觉,能够不假思索地进行条件反射,才能赢得时间去做更高级的数学思维活动。心算,是一个典型的例子。简单数字的心算当然比笔算、计算器计算要快捷。中国在整数、小数、分数上的运算能力,主要体现在速度上。中学生在因子分解、配方、代数变形等方面,也具有优势.这些基础的建立,保证学生把注意力集中在“问题解决”的高级思维之上。
3.严谨形成理性。西方的一些数学教育理论,偏重依赖学生的日常生活经验。中国的数学学习,则注重理性的思维能力。中国的传统是不怕抽象,例如,仁、道、礼、阴阳五行等都是抽象的事物。中国的文化传统讲究严谨治学。因此,总的来说,中国学生不拒绝“概念的抽象定义和严谨的逻辑表达”。中国学生能够学好西方的“演绎几何”,是有文化渊源的。
4.重复依靠变式。西方的一些教育理论,认为中国的学习,只是“重复”的演练,没有价值。其实,一定的重复是必要的。尤其重要的是,中国的数学教学,重视“变式练习”,在变化中求得重复,在重复中获取变化。中国的研究,有概念变式、过程变式、问题变式等多种方式,这些理应成为双基数学教学的有机组成部分。
二、倡导变式教学,追求高效,熟能生巧
认知心理学认为人的专长是由自动化技能、概念性理解和策略性知识组成, 前者与“双基”息息相关。有意义的接受性学习,更是注重“双基”的接受与形成。熟能生巧的现代研究,表明数学是“做”出来的,没有通过演练形成的基本技能,不可能有真正的发展。ACR-T 理论,将复杂问题的学习归结为简单问题的掌握,实质上是一种强调“基础”的心理学理论。近年来,西方的学习理论和中国的教学实际相结合,开始出现新的研究成果,变式教学是其中突出的一项。
“大部分数学概念的形成都经历了一个反省抽象的活动。而要形成反省,被反省的基础,就是操作过程。这种操作缺少了,后面的反省就无法落实。操作达不到一定数量,过程的各种状态和性质在心理上还只是不易引起注意的偶然情况,得不出规律。所以,学生的练习是一种基础活动,是必不可少的。而且,这种活动必须是个人认知的亲身体验。学生必须亲自投入,通过信息去主动地组织现象,操纵对象,