试述胃排空的过程、原理、特点和临床意义。
[考点]胃的运动,胃的排空及调节。
[解析]食物由胃排人十二指肠的过程称为胃的排空。一般在进食后约5分钟,便有食糜排入十二指肠。排空速度与食物的物理性状和化学成分有关。一般来 说,稀的流体食物比稠的或固体的食物排空快;在三种主要营养物中,糖类排空是最快,蛋白质其次,脂肪最慢。此外,胃内容物的总体积较大时,排空的速度较 快。对于一餐混合性食物,由胃完全排空,通常需要4-6小时。
胃排空主要取决于胃和十二指肠之间的压力差。胃排空的动力来源于胃的运动。进食后,胃的紧张性收缩和蠕动增强,胃内压升高,当胃内压大于十二指肠内压 时,幽门舒张,可使胃内1~3mL食糜排入十二指肠。进入十二指肠的酸性食物刺激肠壁感受器,通过神经和体液(如糖依赖性胰岛素释放肽、促胰液素等)机制 抑制胃的运动,使胃排空暂停。随着酸性食糜在十二指肠内被中和、消化产物被吸收,这种抑制作用消失,胃的运动逐渐增强,又出现胃排空。如此反复进行,直至 胃内食糜完全排空,故胃排空是间断性的,能较好地适应十二指肠内消化和吸收的速度。
试述O2和CO2在血液运输中的形式和过程。
[参考答案]
O2和CO2在血液中以物理溶解和化学结合的方式运输。O2和CO2化学结合方式分别占各自总运输的98.5%和95%,物理溶解的量仅占1.5%和5%。物理溶解的量虽然少,但是一重要环节,因为气体必须首先物理溶解后才能发生化学结合。
1)O2的运输:主要以HbO2的方式运输,扩散入血的O2能与红细胞中Hb发生可逆性结合:Hb+O2→HbO2。在肺由于O2分压高,促进O2与Hb结合,将O2由肺运输到组织;在组织处O2分压低,则HbO2解离,释放出O2。
2)CO2的运输:CO2也主要以化学结合方式运输。化学结合运输的CO2分为两种形式:氨基甲酸血红蛋白形式和HCO3-的方式。①HCO3-方 式:HCO3-的方式占CO2运输总量的88%。由于红细胞内含有较高浓度的碳酸酐酶,从组织扩散入血的大部分CO2在红细胞内生成碳酸,HCO3-又解 离成HCO3-和H+。HCO3-在红细胞内与K+结合成KHCO3-。随着红细胞内HCO3-生成的增加,可不断向血浆扩散,与血浆中的Na+结合成 NaHCO3-,同时血浆中Cl-向红细胞内扩散以交换HCO3-。在肺部,由于肺泡气Pco2低于静脉血,上述反应向相反的方向进行,以HCO3-形式 运输的CO2逸出,扩散到肺泡被呼出体外。②氨基甲酸血红蛋白方式,大约7%的CO2与Hb的氨基结合生成氨基甲酸血红蛋白。这一反应无需酶的催化,,反 应迅速,可逆,主要调节因素是氧和作用。由于氧和血红蛋白与CO2的结合能力小于还原血红蛋白,所以在组织外,还原血红蛋白的增多促进了氨基甲酸血红蛋白 的生成,一部分CO2就以HHbNHCOOH形式运输到肺部。在肺部,氧和血红蛋白的生成增加,促使HHbNHCOOH释放出CO2。
平衡电位的决定因素:
神经细胞在兴奋过程中,Na+内流和K+外流的量决定因素,这个问题考研常考。应为各自平衡电位,而非阈电位及钠泵活动程度,一定要注意区分。
细胞在兴奋过程中,离子跨膜流动是由于膜上离子通道开放允许离子通透而引起,此时的离子跨膜流动属于顺浓度差的经通道易化扩散。膜内外离子的不均匀分 布是通道开放后出现离子流的基础,这一基础是由钠泵的不断活动造成的。驱动离子跨膜扩散的力量是膜两侧的离子浓度差和电位差,即电化学驱动力。某种离子电 化学驱动力的大小取决于膜电位与该离子平衡电位的差值。平衡电位与膜电位的差值越大,电化学驱动力越大,离子流量越大;反之,平衡电位与膜电位的差值越 小,电化学驱动力越小,离子流量越小。细胞的阈电位和所给刺激强度均与兴奋的引起有关,而与细胞兴奋时的离子流量无关。
腕管综合征和肘管综合征的鉴别:
腕管综合征和肘管综合征这部分的考题很多考生容易出错,根本原因是没有掌握这部分解剖知识,根据一些支离破碎的知识推导出的结论往往是错的。
肱骨内髁和内上髁之间形成尺神经沟,其浅面有尺侧副韧带、尺侧腕屈肌筋膜和弓状韧带共同形成的顶,两者之间形成的通道即肘管,尺神经行经此管中。肘关 节屈、伸时,尺神经在肘管内被反复牵张或松弛,肘管结构和形态异常时,如肘外翻、尺神经沟较浅或肘管顶部筋膜、韧带结构松弛,尺神经半脱位、肱骨内上髁骨 折骨折块下移压迫尺神经、肘外伤后此处发生异位骨化等等,均可使尺神经受卡压或异常牵张,使尺神经受损出现相应的临床表现,即肘管综合征。腕管系由腕骨构 成底和两侧壁,其上为腕横韧带覆盖而形成的骨纤维隧道,管内有拇长屈肌腱,2~4指的屈指深、浅肌腱和正中神经通过。当腕管受到外源性压迫,管腔本身变 小,管腔内容物增多、体积增大时,可压迫正中神经出现相应的临床表现,即腕管综合征。此外,长期过度用力使用腕部,使腕管管腔内压力反复出现急剧增高变 化,也是正中神经发生慢性损伤的原因。