微积分
一、函数、极限、连续
考试内容:函数的概念及其表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及其图形初等函数数列极限与函数极限的定义以及它们的性质函数的左极限和右极限无穷小和无穷大的概念及关系无穷小的性质及无穷小的比较极限四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限(此处略两公式)函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数、反函数、隐函数和分段函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.会建立简单应用问题中的函数关系式.
6.了解数列极限和函数极限(包括左、右极限)的概念.
7.理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其与无穷小的关系.
8.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,会应用两个重要极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用.
二、一元函数微分学
考试内容:导数的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则罗尔(Rolle)定理和拉格朗目中值定理及其应用洛必达(L'Hospital)法则函数单调性函数的极值函数图形的凹凸性、拐点及浙近线函数图形的描绘函数的最大值和最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念).
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法.
3.了解高阶导数的概念,会求简单函数的高阶导教.
4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔定理和拉格朗日中值定理的条件和结论,掌握这两个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法及简单应用,掌握极值、最大值和最小值的求法(含解较简单的应用题).
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.
9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形.
三、一元函数积分学
考试内容:原函数与不定积分的概念,不定积分的基本性质、基本积分公式,不定积分的换元积分法和分部积分法定积分的概念和基本性质,定积分中值定理变上限定积分定义的函数及其导数,牛顿一莱布尼茨(Newton-Leibniz)公式定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用。
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定极分定义的函数并会求它的导数.
3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用问题.