导师姓名:杨士林
性别:
人气指数:55
所属院校:北京工业大学
所属院系:数理学院
职称:
导师类型:博导
招生专业:学科教学(数学)
研究领域: 代数及其应用、代数表示论、量子群结构与表示、Ringel-Hall代数、(弱)Hopf代数... [展开]
研究领域: 代数及其应用、代数表示论、量子群结构与表示、Ringel-Hall代数、(弱)Hopf代数等. [收起]
通讯方式 :
电子邮件:slyang@bjut.edu.cn
个人简述 :
杨士林, 男, 教授, 理学博士, 博士生导师. 分别于1999年4月-2000年4月、 2005年2月-2006年2月在德国Bielefeld大学数学系、斯图加特大学数学系学习和访问.美国《数学评论》、德国《数学评论》评论员;国际杂志《Algebra》编委.分别在《Journal of Algebra》、《Communications inAlgebra》、《Algebra andRepresentation Theory》、《Letter in Mathematical Physics》、《Journal of Mathematical Physics》、《AlgebraColloquium》、《Journal of Algebra and its Application》、《中国科学》(中英文版)、《数学学报》(英文版)、《数学年刊》等国内外学术刊物上发表学术论文60余篇.承担并完成数项“国家自然科学基金”,“北京市自然科学基金”,“留学回国人员启动基金”、“北京市教委基金”、“留学回国人员科技活动择优资助优秀项目”、“教育部博士点基金”等项目.目前主持北京市自然科学基金等;承担国家自然科学基金两项.1998年获北京市高校优秀青年骨干教师称号, 2004年获北京工业大学十佳青年称号.
科研工作 :
主要研究成果(自2001年)——[1] Finite dimensional representations of u-Hopf algebras. Comm. Algebra 29 (12), 2001, 5359- 5370.[2 ] Coxeter transformations in quantum groups. Algebr. Represent. Theory 4 (5), 2001, 491-501.(with J. Xiao)[3]BGP-reflection functors and Lusztig's symmetries: a Ringel-Hall algebra approach to quantumgroups. J. Algebra 241(2001), 204-246.(With J. Xiao)[4]Global dimension for Hopf actions. Comm. Algebra 30 (8), 2002, 3653-3667.[5]Finite-dimensional representations of quantum group Uq(f(K,H)) . Comm. Algebra 30 (5), 2002, 2191-2211.(with D. Wang, Q. Ji)[6]Representations of simple pointed Hopf algebras. J. Algebra Appl. 3(1), 2004, 91--104.[7]Quantum groups and deformations of preprojective algebras. J. Algebra 279 (1), 2004, 3--21. [8]Uqres(sl2)-invariant forms on their modules. Comm. Algebra 32(5), 2004, 1685--1703. (with D. Wang)[9]Quantum groups and double quiver algebras. Lett. Math. Phys. 71(2005), no. 1, 49--61. (with H. Huang).[10]Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys. 46(2005), no. 7, 073502, 18 pp.[11]Representations of weak Hopf algebras associated to cyclic quivers. Comm. Algebra. 33 (2005), 4321--4335 (with D. Wang).[12]Automorphism groups of pointed Hopf algebras. Front. Math. China 2(2007), no. 2, 305--316.[13]Representations of nonstandard Poincaré Hopf algebras. Comm. Algebra 36 (2008), no. 2, 732--748. (with Y. Yang).[14]Representations of deformed preprojective algebras and quantum groups. Sci. China Ser. A 52 (1), 2009, 109-118.(with J. Liu),[15]弱Hopf 超代数wslqd(m|n), 数学物理学报, 29(2009): 70--86. (with J. Liu).[16]Young tableaux and crystal base for Uq(osp(1|2n)), Sci. China Math. 53(2010):289-303. (with J.Liu).[17]Lusztig symmetries and automorphisms of quantum superalgebras Uq(osp(1|2r)),J. Algebra Appl. 9(2010):725-768.[18]Orthosymplectic quantum function superalgebras OSPq(2l +1|2n), Acta Math. Sinica (Engl. Ser.) 27(2011):983 -1004.(with J. Liu).[19]Skew group algebras of deformed preprojective algebras, J. Algebra, 332(2011):209-228. (with B. Hou)[20]Quantum superdeterminant of OSPq(1|2n), Front. Math. China. 6(2011):115-127. (with J. Liu).[21] Quantum superalgebras at root of unity, Front. Math. China 7 (2012), no. 4, 607–628. (with J. Chen).[22]Algebra automorphisms of two-parameter quantum superalgebras Ur,s(osp(1, 2, c)), Far East. J. Math. Sci. 64 (2012):63-80. (with J. Chen)[23]Restricted forms of quantum supergroups, J. Math. Phys. 53(4), 2012: 043505, 13 pages. (with J. Chen).[24]Elementary superalgebras. Algebra Colloq. 19(4), 2012, 673–682.(with B. Hou).[25]Liu, Junli Yang, Shilin Lusztig symmetries and Poincare-Birkhoff-Witt basis for wUdr,s(osp(1|2n)). J. Math. Phys. 54 (12), 2013, 121704, 27 pp.[26]Xu, Yongjun Yang, Shilin A categorification of the spin representation of U(so(7,C)) via projective functors. Comm. Algebra41(10), 2013, 3868–3888.[27]PBW-deformations of quantum groups. J. Algebra ,408 , 2014, 222–249. (With Xu, Y.)[28]Hochschild cohomology of the Z2-Galois covering of a class of quantum Koszul algebras. 数学年刊. Ser. A 35(4),2014, 385-398. (with B. Hou).[29]Generalized McKay quivers, root system and Kac-Moody algebras. J. Korean Math. Soc.52(2), 2015, 239–268.(with B. Hou).[30]Gorenstein theory for n-th differential modules. Period. Math. Hungar.71 (1), 2015, 112–124. (with H. Xu, et.la).[31]Two-parameter Quantum Superalgebras and PBW Theorem, Algebra Colloq. 23(2), 2016, 303-324. (with C. Ai).[32]H-simple module algebras for eight-dimensional non-semisimple Hopf algebras, Journal of Algebra and Its Applications,15(7), 2016, ** (25 pages). (with F. Gao).
北京工业大学考研研究生导师简介-杨士林
本站小编 Free考研网/2019-05-27
相关话题/代数 数学 基金 结构 数学系
2020考研数学线性代数知识点解析汇总
序号 线性代数知识点解析 资料下载 1 矩阵乘法方块法则 资料下载 2 n阶矩阵方幂和多项式 资料下载 3 矩阵乘法 资料下载 4 克莱姆法则 资料下载 5 行列式化零降阶法 资料下载 6 2阶和3阶行列式计算 资料下载 7 矩阵消元法 资料下载 8 阶梯形矩阵 资料下载 9 n阶矩阵与几个特殊矩阵 资料下载 10 线性运算和转置 资料下载 11 矩阵分解 资料下载 12 乘积矩阵的向量 资料下载 ...线性代数概率论 本站小编 免费考研网 2019-05-26西安建筑科技大学结构力学研究生入学考试学习笔记(图文)
.. ...专业课考研资料 本站小编 免费考研网 2019-04-14同济大学求进结构力学辅导班笔记
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12同济大学结构力学学习方法及解题指导
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12同济大学结构力学同达辅导班笔记
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12同济大学材料力学与结构力学求进冲刺班
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12数学物理方法第三版 整理 第四版 五章、七章到十四章
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12数学模型课后答案(第三版)
.. ...专业课考研资料 本站小编 免费考研网 2019-04-12清航考研计算机数据结构考试要点解析(殷人昆等)
.. ...专业课考研资料 本站小编 免费考研网 2019-04-10南京航天航空大学结构力学PPT课件张斌版
南京航天航空大学结构力学PPT课件 ...专业课考研资料 本站小编 免费考研网 2019-04-10南京航空航天大学航空宇航学院结构力学PPT课件史治宇版
一、弹性力学基础 弹性力学是固体力学的一个分支学科,它研究弹性体在外力和其它外部因素作用下所产生的变形和内力 二、结构力学 结构力学是工程力学的一个分支,它研究结构(杆系结构、薄壁结构等)在外力和其它外部因素作用下所产生的变形和内力 1、研究内容 研究对象: 材料力学研究杆状弹性体在拉伸、压缩、剪切、弯曲和扭转作用下的变形和内力。 弹性力学研究的对象则没有形状的限制。 连续性假设 —— 认为构成物体的材料是密实无间隙的连续介质。因此,物体中的应力、应变、位移等物理量就可以看成是连续的,在数学上可以用连续函数来表示。 材料的匀质和各向同性假设 —— 匀质指物体内各处材料的力学性质都相同,与各点的空间位置无关。各向同性指在物体内任一点处材料在各个方向的物理性质都相同。因此,反映这些物理性质的弹性系数不随坐标和方向而改变。 ...专业课考研资料 本站小编 免费考研网 2019-04-10结构力学复习与习题分析(徐新济)
.. ...专业课考研资料 本站小编 免费考研网 2019-04-10简明结构化学课后习题答案(第三版,夏少武)
... ...专业课考研资料 本站小编 免费考研网 2019-04-10华南理工大学高等数学作业本答案
... ...专业课考研资料 本站小编 免费考研网 2019-04-09