机械原理考研重要概念总结

本站小编 免费考研网/2016-08-31

考研机械原理重要概念1

零件:独立的制造单元

构件:机器中每一个独立的运动单元体

运动副:由两个构件直接接触而组成的可动的连接

运动副元素:把两构件上能够参加接触而构成的运动副表面

运动副的自由度和约束数的关系f=6-s

运动链:构件通过运动副的连接而构成的可相对运动系统

平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副

机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成

高副:两构件通过点线接触而构成的运动副

低副:两构件通过面接触而构成的运动副

由M个构件组成的复合铰链应包括M-1个转动副

平面自由度计算公式:F=3n-(2Pl+Ph)

局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动 虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用 虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利 基本杆组:不能在拆的最简单的自由度为零的构件组

速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心

相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是

三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上 速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形

驱动力:驱动机械运动的力

阻抗力:阻止机械运动的力

矩形螺纹螺旋副:

拧紧:M=Qd2tan(α+φ)/2

放松:M’=Qd2tan(α-φ)/2

三角螺纹螺旋副:

拧紧:M=Qd2tan(α+φv)/2

放松:M=Qd2tan(α-φv)/2

质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化

质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变

机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动



判断自锁的方法:

1、 根据运动副的自锁条件,判定运动副是否自锁

移动副的自锁条件:传动角小于摩擦角或当量摩擦角

转动副的自锁条件:外力作用线与摩擦圆相交或者相切

螺旋副的自锁条件:螺旋升角小于摩擦角或者当量摩擦角

2、 机械的效率小于或等于零,机械自锁

3、 机械的生产阻力小于或等于零,机械自锁

4、 作用在构件上的驱动力在产生有效分力Pt的同时,也产生摩擦力F,当其有效分力总是

小于或等于由其引起的最大摩擦力,机械自锁

机械自锁的实质:驱动力所做的功总是小于或等于克服由其可能引起的最大摩擦阻力所需要的功

提高机械效率的途径:尽量简化机械传动系统;选择合适的运动副形式;尽量减少构件尺寸;减小摩擦

铰链四杆机构有曲柄的条件:

1、 最短杆与最长杆长度之和小于或等于其他两杆长度之和

2、 连架杆与机架中必有一杆为最短杆

在曲柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构

在曲柄滑块机构中改变回转副半径而形成偏心轮机构

曲柄摇杆机构中只有取摇杆为主动件是,才可能出现死点位置,处于死点位置时,机构的传动角为0

急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度

极为夹角:机构在两个极位时原动件AB所在的两个位置之间的夹角θ

θ=180°(K-1)/(K+1)

压力角:力F与C点速度正向之间的夹角α

传动角:与压力角互余的角(锐角)

行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值 K=V2/V1=180°+θ/(180°—θ)

平面四杆机构中有无急回特性取决于极为夹角的大小

试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)

曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构 机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法

刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击

柔性冲击:加速度突变为有限值,因而引起的冲击较小

在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击

在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动

凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小

齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮合齿廓在接触点处的公法线所分成的两线段长成反比

渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK

渐开线的性质:

1、 发生线上BK线段长度等于基圆上被滚过的弧长AB

2、 渐开线上任一一点的发线恒于其基圆相切

3、 渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零

4、 渐开线的形状取决于基圆的大小

5、 基圆以内无渐开线

6、 同一基圆上任意弧长对应的任意两条公法线相等

渐开线函数:invαK=θk=tanαk-αk

渐开线齿廓的啮合特点:

1、 能保证定传动比传动且具有可分性

传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比 I12=ω1/ω2=O2P/O1P=rb2/rb1

2、 渐开线齿廓之间的正压力方向不变

渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)

记P180表10-2

一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等

一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2

渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角

渐开线齿廓上任意一点的法线与基圆相切

根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1 一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等

重合度:B1B2与Pb的比值ξα;

齿轮传动的连续条件:重合度大于或等于许用值

定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的

周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转

复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成 定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值 中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用


相关话题/机械原理