4-磷酸赤藓糖与糖酵解中的磷酸烯醇式丙酮酸(PEP)可合成莽草酸,经莽草酸途径可合成芳香族a.a。
3、 是植物光合作用中CO2合成Glc的部分途径
4、 NADPH主要用于还原反应,其电子通常不经电子传递链传递,一般不用于ATP合成。
如NADPH用于供能,需通过两个偶联反应,进行穿梭转运,将氢转移至线粒体NAD+上。
胞液内:α-酮戊二酸+CO2+NADPH+H+=异柠檬酸+NADP+
异柠檬酸能自由通过线粒体膜,传递氢。
线粒体内:异柠檬酸+NAD+=α-酮戊二酸+CO2+NADH+H+
一分子Glc经磷酸戊糖途径,完全氧化,产生12分子NADPH,可生成(36-1)=35ATP
第四节 糖醛酸途径
P109
糖醛酸途径:从G-1-P或G-6-P开始,经UDP-葡萄糖醛酸生成糖醛酸的途径。
在肝脏中糖醛酸可与(毒素、药物等)含-OH、-COOH、-NH2、-SH基的异物(毒素、药物等)结合,生成可溶于水的化合物,随尿排出,具有解毒作用。
一、 糖醛酸途径:P108 图13-15
二、 糖醛酸的生理意义
1. 在肝中糖醛酸与药物(含芳环的苯酚、苯甲酸)或含-OH、-COOH、-NH2、-SH基的异物结合成可溶于水的化合物,随尿、胆汁排出,起解毒作用。
2. UDP糖醛酸是糖醛酸基的供体,用于合成粘多糖(硫酸软骨素、透明质酸、肝素等)。
3. 从糖醛酸可以转变成抗坏血酸(人及灵长动物不能,缺少L-古洛糖酸内酯氧化酶)
4.从糖醛酸可以生成5-磷酸木酮糖,可与磷酸戊糖途径连接。
第五节 糖的合成代谢
糖的合成代谢有:光合作用 ,糖异生,单糖→多糖,结构多糖的生物合成
一、 光合作用:葡萄糖的生物合成
卡尔文循环Calvin
由CO2和H2O合成已糖,是绿色植物光合作用的基本过程
合成动力(能量)是叶绿素吸收的光能。
第一阶段:原初反应,吸收光能,并将光能转化成电能。
第二阶段:电子传递和光合磷酸化。将电能转化成化学能,推动ATP和NADPH的合成,后两者称为同化力。同时水被分解放出O2。
第三阶段:CO2的固定和还原,又称CO2同化。利用同化力将固定在1、5—二磷酸核酮糖(RuBP)上的CO2,通过一系列反应进行还原,最终产和F—6—P,再由此转化成果糖或Glc。
卡尔文循环生成的中间产物,大多是3碳至7碳糖的磷酸酯。
二、 糖的异生作用
糖异生是指从非糖物质合成Glc的过程。
植物利用光、CO2和H2O合成糖。
动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。
1、 糖异生的证据及生理意义
证据:大鼠禁食24h,肝糖原由7%降至1%。再喂乳酸、丙酮酸或TCA中间产物,肝糖原会增加。
意义:糖异生是一个十分重要的生物合成葡萄糖的途径。红细胞及大脑是以Glc为主要能量,成人每天需160克Glc,而其中120克Glc用于脑代谢。
糖异生主要在肝脏中进行,肾上腺皮质中也有,脑和肌肉细胞中很少。因此,在血中葡萄糖浓度降低时首先是脑受到伤害。
2、 异生途径
糖异生起源于细胞线粒体内。由丙酮酸生成Glc是糖异生的主要途径。
P112 图13—16 糖异生及降解途径。
从丙酮酸到葡萄糖的糖异生途径不是糖酵解的简单逆转,因为在糖酵解中有3步是不可逆步骤,糖异生时必须饶过这3步:①Glc到G-6-P ,②F-6-P到F-1.6-P ③PEP到丙酮酸
(1)、 丙酮酸被羧化成草酰乙酸(线粒体内)
丙酮酸 + CO2 + ATP → 草酰乙酸 + ADP
丙酮酸羟化酶需要生物素为辅酶。
人和哺乳动物的丙酮酸羧化酶主要存在于肝脏和肾的线粒体内,所以细胞液中的丙酮酸要经过运载载体进入线粒体后才能羧化成草酰乙酸。
丙酮酸羧化酶还催化三羧酸循环的回补反应,所以,草酰乙酸既是糖异生的中间物,又是三羧酸循环的中间物,丙酮酸羧化酶联系着三羧酸循环和糖异生作用
丙酮酸羧化酶是别构酶,受乙酰CoA和高比值ATP/ADP的激活。若细胞内ATP含量高,则三羧酸循环的速度降低,糖异生作用加强。
(2)、 草酰乙酸被还原成苹果酸(线粒体内)
该反应的逆反应就是TCA。
生成的苹果酸从线粒体内运到线粒体外。
(3)、 苹果酸被重新氧化成草酰乙酸(线粒体外)
(4)、 草酰乙酸生成磷酸烯醇式丙酮酸
丙酮酸羧化激酶与草酰乙酸的Km值为9nM,高于细胞内的生理浓度,所以草酰乙酸的浓度可以调节反应速度和糖异生的速度
(5)、 磷酸烯醇式丙酮酸沿糖酵解的逆方向生成1.6—二磷酸果糖。
(6)、 F-1.6-P → F-6-P
果糖二磷酸酶
这是糖异生的关键反应,果糖二磷酸酶被AMP、2.6—二磷酸果糖强烈抑制,但被ATP、柠檬酸和3—磷酸甘油酸激活。
6-磷酸果糖异构化为6-磷酸葡萄糖
(7)、 6-磷酸葡萄糖生成葡萄糖
.
糖异生总反应:
2丙酮酸+4ATP+2GTP+2NADH+2H++4H20→Glc+2NAD++4ADP+2GDP+6Pi.
从2分子丙酮酸形成Glc共消耗6个ATP,2个NADH。
在糖异生中,有三步反应与糖酵解途径不同:
丙酮酸→磷酸烯醇式丙酮酸
1.6—二磷酸果糖→F—6—P。
G—6—P→Glc
3、 糖异生途径的前体
P113图13—17糖异生途径的前体
凡是能生成丙酮酸或成草酰乙酸的物质都可以变成葡萄糖,如TCA中全部的中间产物,大多数氨基酸
植物微生物经过乙醛酸循环,可将乙酰CoA转化成草酰乙酸,因此可以将脂肪酸转变成糖。
动物体中不存在乙醛酸循环,因此不能将乙酰CoA转变成糖。
非生糖氨基酸:Ile、Leu、Tyr、Trp
反刍动物胃、肠道细菌分解纤维素,产生乙酸、丙酸、丁酸等,其中奇数碳脂肪酸可转变成琥珀酰CoA,进入TCA,生糖。
4、 糖异生和糖酵解的代谢协调调控P123
参阅 P123
糖异生和糖酵解在细胞中是两个相反的代谢途径,同时,又是协调的。
①高浓度G—6—P抑制已糖激酶,活化G—6—P酶,抑制酵解,促进异生。
②酵解和异生的控制点是F—6—P与F—1.6—2P的转化。
糖异生的关键调控酶是F—1.6—2P酶,而糖酵解的关键调控酶是磷酸果糖激酶。
ATP促进酵解,柠檬酸促进糖异生。
F-2.6-P是强效应物,促进酵解,减弱异生。
③丙酮酸到PEP的转化在糖异生中是由丙酮酸羧化酶调节,在酵解中被丙酮酸激酶调节。
乙酰CoA激活丙酮酸羧化酶的活性,抑制丙酮酸脱氢酶的活性,因此乙酰CoA过量时,可促进Glc 生成。
④酵解与异生途径,一个途径开放,另一途径就关闭,可避免无数循环。
无效循环:由不同酶催化的两个相反代谢,反应条件不一样,一个方向需ATP参加,另一方向则进行水解,结果使ATP水解,消耗能量,反应物无变化。
酵解和异生中有三个点可能产生无效循环:
P124
这种无效循环只能产生热量供自身需要。
⑤激素对酵解和异生的调控
肾上腺素、胰高血糖素和糖皮质激素促进异生,胰岛素加强酵解。
三、 糖原的合成与分解
糖原是葡萄糖的储存形式,主要发生在肝脏、骨骼肌中。
(一) 糖原分解代谢
(二) 糖原合成代谢
(1)、 UDP葡萄糖焦磷酸化酶
G—1—P+UTP→UDP葡萄糖+ppi.
ppi水解,反应向右。
(2)、 糖原合成酶
a—OH,有活性。 B—O—P,少活性。
新的Glc残基加在糖原引物的非还原端的Glc残基的C4羟基上,形成α-1.4糖苷键,UDP被延长的糖原分子末端Glc残基C4上的羟基取代。
(3)、 分枝酶
(三) 糖原代谢的调节 P124
生化笔记--沈同(适用第2版及第3版)第九章 脂代谢
脂类的生理功能
a. 生物膜的骨架成分 磷脂、糖脂
b. 能量贮存形式 甘油三酯
c. 参与信号识别、免疫 糖脂
d. 激素、维生素的前体 固醇类激素,维生素D、A、K、E
e. 生物体表保温防护
脂肪贮存量大,热值高,39KJ。
70kg人体,贮存的脂肪可产生:2008320kJ
蛋白质 105000kJ
糖原 2520kJ
Glc 168kJ
脂肪的热值:1g脂肪产生的热量,是等量蛋白质或糖的2.3倍。
第一节 脂类的消化、吸收和转运
一、 脂类的消化和吸收
1、 脂类的消化(主要在十二指肠中)
食物中的脂类主要是甘油三酯 80-90%
还有少量的磷脂 6-10%
胆固醇 2-3%
胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。脂肪间接刺激胆汁及胰液的分泌。胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。
胰腺分泌的脂类水解酶:
① 三脂酰甘油脂肪酶(水解三酰甘油的C1、C3酯键,生成2-单酰甘油和两个游离的脂肪酸。胰脏分泌的脂肪酶原要在小肠中激活)
②磷脂酶A2(水解磷脂,产生溶血磷酸和脂肪酸)
③胆固醇脂酶(水解胆固醇脂,产生胆固醇和脂肪酸)
④辅脂酶(Colipase)(它和胆汁共同激活胰脏分泌的脂肪酶原)
2、 脂类的吸收
脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。
小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。
二、 脂类转运和脂蛋白的作用
甘油三脂和胆固醇脂在体内由脂蛋白转运。
脂蛋白:是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。
载脂蛋白:(已发现18种,主要的有7种)在肝脏及小肠中合成,分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。
脂蛋白的分类及功能:
P151表15-1各种脂蛋白的组成、理化性质、生理功能
三、 贮脂的动用
皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。
血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。
贮脂的降解受激素调节。
促进:肾上腺素、胰高血糖素、肾上腺皮质激素
抑制:胰岛素
植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。
第二节 脂肪酸和甘油三酯的分解代谢
一、 甘油三酯的水解
甘油三酯的水解由脂肪酶催化。
组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。
这三种酶是:
脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶)
甘油二酯脂肪酶
甘油单酯脂肪酶
肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。
胰岛素、前列腺素E1作用相反,可抗脂解。
油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。
二、 甘油代谢
在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。
P152 反应式:
三、 脂肪酸的氧化
(一) 饱和偶数碳脂肪酸的β氧化
1、 β氧化学说
早在1904年,Franz 和Knoop就提出了脂肪酸β氧化学说。
用苯基标记含奇数碳原子的脂肪酸,饲喂动物,尿中是苯甲酸衍生物马尿酸。
用苯基标记含隅数碳原子的脂肪酸,饲喂动物,尿中是苯乙酸衍生物苯乙尿酸。
结论:脂肪酸的氧化是从羧基端β-碳原子开始,每次分解出一个二碳片断。
产生的终产物苯甲酸、苯乙酸对动物有毒害,在肝脏中分别与Gly反应,生成马尿酸和苯乙尿酸,排出体外。
β-氧化发生在肝及其它细胞的线粒体内。
2、 脂肪酸的β氧化过程
脂肪酸进入细胞后,首先被活化成酯酰CoA,然后再入线粒体内氧化。
(1)、 脂肪酸的活化(细胞质)
RCOO- + ATP + CoA-SH → RCO-S-CoA + AMP + Ppi
生成一个高能硫脂键,需消耗两个高能磷酸键,反应平衡常数为1,由于PPi水解,反应不可逆。
细胞中有两种活化脂肪酸的酶:
内质网脂酰CoA合成酶,活化12C以上的长链脂肪酸
线粒体脂酰CoA合成酶,活化4~10C的中、短链脂肪酸
(2)、 脂肪酸向线粒体的转运
中、短链脂肪酸(4-10C)可直接进入线粒体,并在线粒体内活化生成脂酰CoA。
长链脂肪酸先在胞质中生成脂酰CoA,经肉碱转运至线粒体内。
肉(毒)碱:L-β羟基-r-三甲基铵基丁酸
P154.图15-1脂酰CoA以脂酰肉碱形式转运到线粒体内
线粒体内膜外侧(胞质侧):肉碱脂酰转移酶Ⅰ催化,脂酰CoA将脂酰基转移给肉碱的β羟基,生成脂酰肉碱。
线粒体内膜:线粒体内膜的移位酶将脂酰肉碱移入线粒体内,并将肉碱移出线粒体。
线粒体内:膜内侧:肉碱脂酰转移酶Ⅱ催化,使脂酰基又转移给CoA,生成脂酰CoA和游离的肉碱。
脂酰CoA进入线粒体后,在基质中进行β氧化作用,包括4个循环的步骤。
(3)、 脂酰CoA脱氢生成β-反式烯脂酰CoA
P154 反应式:
线粒体基质中,已发现三种脂酰CoA脱氢酶,均以FAD为辅基,分别催化链长为C4-C6,C6-C14,C6-C18的脂酰CoA脱氢。
(4)、 △2反式烯脂酰CoA水化生成L-β-羟脂酰CoA
P155 反应式:
β-烯脂酰CoA水化酶
(5)、 L-β-羟脂酰CoA脱氢生成β-酮脂酰CoA
P155 反应式:
L-β羟脂酸CoA脱氢酶
(6)、 β-酮脂酰CoA硫解生成乙酰CoA和(n-2)脂酰CoA
P155 反应式:
酮脂酰硫解酶
3、 脂肪酸β-氧化作用小结
结合P154图15-1和P156图15-2,回顾脂肪酸β氧化过程。
(1) 脂肪酸β-氧化时仅需活化一次,其代价是消耗1个ATP的两个高能键
(2) 长链脂肪酸由线粒体外的脂酰CoA合成酶活化,经肉碱运到线粒体内;中、短链脂肪酸直接进入线粒体,由线粒体内的脂酰CoA合成酶活化。
(3) β-氧化包括脱氢、水化、脱氢、硫解4个重复步骤
(4) β-氧化的产物是乙酰CoA,可以进入TCA
4、 脂肪酸β-氧化产生的能量
以硬脂酸为例,18碳饱和脂肪酸
胞质中: ⑴活化:消耗2ATP,生成硬脂酰CoA
线粒体内:
⑵脂酰CoA脱氢:FADH2 ,产生2ATP
⑶β-羟脂酰CoA脱氢:NADH,产生3ATP
⑷β-酮脂酰CoA硫解:乙酰CoA → TCA,12ATP
(n-2)脂酰CoA → 第二轮β氧化
活化消耗: -2ATP
β氧化产生: 8×(2+3)ATP = 40
9个乙酰CoA: 9×12 ATP = 108
净生成: 146ATP
饱和脂酸完全氧化净生成ATP的数量:(8.5n-7)ATP (n 为偶数)
硬脂酸燃烧热值:–2651 kcal
β-氧化释放:146ATP×(-7.3Kcal)=-1065.8Kcal
转换热效率
5、 β-氧化的调节
⑴脂酰基进入线粒体的速度是限速步骤,长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶Ⅰ,限制脂肪氧化。
⑵[NADH]/[NAD+]比率高时,β—羟脂酰CoA脱氢酶便受抑制。
⑶乙酰CoA浓度高时;可抑制硫解酶,抑制氧化(脂酰CoA有两条去路: ①氧化。②合成甘油三酯)(二) 不饱和脂酸的β氧化
1、 单不饱和脂肪酸的氧化
P157 油酸的β氧化
△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)
(146-2)ATP
2、 多不饱和脂酸的氧化
P158 亚油酸的β氧化
△3顺—△2反烯脂酰CoA异构酶(改变双键位置和顺反构型)
β-羟脂酰CoA差向酶(改变β-羟基构型:D→L型)
(146—2—2)ATP
(三) 奇数碳脂肪酸的β氧化
奇数碳脂肪酸经反复的β氧化,最后可得到丙酰CoA,丙酰CoA有两条代谢途径:
1、 丙酰CoA转化成琥珀酰CoA,进入TCA。
详细过程 P158
动物体内存在这条途径,因此,在动物肝脏中奇数碳脂肪酸最终能够异生为糖。
反刍动物瘤胃中,糖异生作用十分旺盛,碳水化合物经细菌发酵可产生大量丙酸,进入宿主细胞,在硫激酶作用下产丙酰CoA,转化成琥珀酰CoA,参加糖异生作用。
2、 丙酰CoA转化成乙酰CoA,进入TCA
P159
这条途径在植物、微生物中较普遍。
有些植物、酵母和海洋生物,体内含有奇数碳脂肪酸,经β氧化后,最后产生丙酰CoA。
(四) 脂酸的其它氧化途径
1、 α—氧化(不需活化,直接氧化游离脂酸)
植物种子、叶子、动物的脑、肝细胞,每次氧化从脂酸羧基端失去一个C原子。
RCH2COOH→RCOOH+CO2
α—氧化对于降解支链脂肪酸、奇数碳脂肪酸、过分长链脂肪酸(如脑中C22、C24)有重要作用
2、 ω—氧化(ω端的甲基羟基化,氧化成醛,再氧化成酸)
动物体内多数是12C以上的羧酸,它们进行β氧化,
但少数的12C以下的脂酸可通过ω—氧化途径,产生二羧酸,如11C脂酸可产生11C、9C、和7C的二羧酸(在生物体内并不重要)。
ω—氧化涉及末端甲基的羟基化,生成一级醇,并继而氧化成醛,再转化成羧酸。
ω—氧化在脂肪烃的生物降解中有重要作用。泄漏的石油,可被细菌ω氧化,把烃转变成脂肪酸,然后经β氧化降解。
四、 酮体的代谢
脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。
酮体在肝中生成后,再运到肝外组织中利用。
1、 酮体的生成
酮体的合成发生在肝、肾细胞的线粒体内。
形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,β—羟丁酸70%,少量丙酮。(丙酮主要由肺呼出体外)
肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。
当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。
酮体的生成途径:
P164 图15-5酮体的生成过程
肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。
2、 酮体的利用
肝外许多组织具有活性很强的利用酮体的酶。
(1)、 乙酰乙酸被琥珀酰CoA转硫酶(β-酮脂酰CoA转移酶)活化成乙酰乙酰CoA
心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸。
乙酰乙酸+琥珀酰CoA→乙酰乙酰CoA+琥珀酸
然后,乙酰乙酰CoA被β氧化酶系中的硫解酶硫解,生成2分子乙酰CoA,进入TCA。
(2)、 β—羟基丁酸由β—羟基丁酸脱氢酶催化,生成乙酰乙酸,然后进入上述途径。
(3)、 丙酮可在一系列酶作用下转变成丙酮酸或乳酸,进入TCA或异生成糖。
肝脏氧化脂肪时可产生酮体,但不能利用它(缺少β—酮脂酰CoA转移酶),而肝外组织在脂肪氧化时不产生酮体,但能利用肝中输出的酮体。
在正常情况下,脑组织基本上利用Glc供能,而在严重饥饿状态,75%的能量由血中酮体供应。
3、 酮体生成的生理意义
酮体是肝内正常的中间代谢产物,是肝输出能量的一种形式。
酮体溶于水,分子小,能通过血脑屏障及肌肉毛细管壁,是心、脑组织的重要能源。脑组织不能氧化脂酸,却能利用酮体。长期饥饿,糖供应不足时,酮体可以代替Glc,成为脑组织及肌肉的主要能源。
正常情况下,血中酮体0.03~0.5 mmal/2。在饥饿、高脂低糖膳食时,酮体的生成增加,当酮体生成超过肝外组织的利用能力时,引起血中酮体升高,导致酮症酸(乙酰乙酸、β—羟丁酸)中毒,引起酮尿。
4、 酮体生成的调节。
(1)饱食:胰岛素增加,脂解作用抑制,脂肪动员减少,进入肝中脂酸减少,酮体生成减少。
饥饿:胰高血糖素增加,脂肪动员量加强,血中游离脂酸浓度升高,利于β氧化及酮体的生成。
(2)肝细胞糖原含量及代谢的影响:
进入肝细胞的游离脂酸,有两条去路:一条是在胞液中酯化,合成甘油三酯及磷脂;一是条进入线粒体进行β氧化,生成乙酰CoA及酮体。
肝细胞糖原含量丰富时,脂酸合成甘油三酯及磷脂。
肝细胞糖供给不足时,脂酸主要进入线粒体,进入β—氧化,酮体生成增多。
(3)丙二酸单酰CoA抑制脂酰CoA进入线粒体
乙酰CoA及柠檬酸能激活乙酰CoA羧化酶,促进丙二酰CoA的合成,后者能竞争性抑制肉碱脂酰转移酶Ⅰ,从而阻止脂酰CoA进入线粒体内进行β氧化。
第三节 脂肪酸及甘油三脂的合成代谢
所有的生物都可用糖合成脂肪酸,有两种合成方式。
A. 从头合成(乙酰CoA)——在胞液中(16碳以下)
B. 延长途径——在线粒体或微粒体中
高等动物的脂类合成在肝脏、脂肪细胞、乳腺中占优势。
一、 饱和脂肪酸的从头合成
合成部位:细胞质中
合成的原料:乙酰CoA(主要来自Glc酵解)
NADPH (磷酸戊糖途径)
ATP
HCO3—
1、 乙酰CoA的转运
细胞内的乙酰CoA几乎全部在线粒体中产生,而合成脂肪酸的酶系在胞质中,乙酰CoA必须转运出来。
转运方式:柠檬酸-丙酮酸循环