10.了解初等函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学
考试内容
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线及其方程基本初等函数的导数导数和微分的四则运算反函数、复合函数。隐函数以及参数方程所确定的函数的微分法高阶导数的概念某些简单函数的n阶导数一阶微分形式的不变性微分在近似计算中的应用罗尔(Rolle)定理拉格朗日(LAGRANGE)中值定理柯西(Cauchy)中值定理泰勒(Taylor)定理洛必达(L‘HOspiial)法则函数的极值及其求法函数单调性函数图形凹凸性、拐点及渐进线函数图形的描绘函数最大值和最小值及其简单应用弧微分曲率的概念曲率半径方程近似解的二分法和切线法
考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分,了解微分在近似计算中的应用。
3.了解高阶导数的概念,会求分段函数的一阶、二阶导数,并会求一些简单函数的“阶导数。
4.会求隐函数和由参数方程所确定的函数的一阶、二阶导数,并会求简单函数的n阶导数。
5.理解罗尔定理和拉格朗日中值定理,了解柯西中值定理和泰勒定理,并会运用它们解决一些简单间题。
6.理解函数的极值概念、掌握用导数判断函数的单调性和求函数极值的方法,会求函救的最大值、最小值及其简单应用。
7.会用导数判断函数图形的凹凸性和拐点,会求会求函数图形的水平、铅直和斜渐近线,会描绘函数的图形。
8.掌握用洛必达法则求未定式极限的方法。
9.了解曲率和曲率半径的概念并会计算曲率和曲率半径。
10.了解求方程近似解的二分法和切线法。
三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿一莱布尼茨(NewtOn一leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分的概念及计算定积分的近似计算法定积分的应用
考试要求1.理解原函数概念,理解不定积分和定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3.会求有理函数、三角函数的有理式和简单无理函数的积分。
4.理解变上限定积分定义的函数,并会求它的导数,掌握牛顿一莱布尼茨公式。
5.了解广义积分的概念并会计算广义积分。
6.了解定积分的近似计算法。
7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积已知的立体体积、变力作功、引力、压力和函数平均值等)。
四、常微分方程
考试内容
常微分方程的概念微分方程的解、阶、通解、初始条件和特解变量可分离的方程齐次方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的一些简单应用
考试要求1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握变量可分离的方程及一阶线性方程的解法,会解齐次方程。
3.会用降阶法解下列方程:(略)
4.理解二阶线性微分方程解的性质及解的结构定理。
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
6.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
7.会用微分方程解决一些简单的应用问题;