2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组的秩。
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系。
(四)线性方程组
考试内容
线性方程组的克莱姆(又译:克拉默)(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解
考试要求
1.会用克莱姆法则。
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。
3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。
4.理解非齐次线性方程组的解的结构及通解的概念。
5.会用初等行变换求解线性方程组。
(五)矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。
3.了解实对称矩阵的特征值和特征向量的性质。
四、试卷结构
(一)题分及考试时间
试卷满分为150分,考试时间为180分钟。
(二)内容比例
高等数学约70%
线性代数约30%
(三)题型比例
填空题与选择题约50%
解答题(包括证明题)约50%
五、复习参考资料
1.《高等数学》同济大学数学教研室主编(第四版)高等教育出版社
2.《线性代数》同济大学数学教研室编高等教育出版社