(1)大部分具有自我调节能力的多酶体系,第一步反应就是限速步骤,它控制着全部反应序列的总速度。
(2)反馈抑制与底物激活
催化第一步反应的酶,大多都是别构酶,能被全部反应序列的最终产物所抑制,有时则是反应序列分叉处的酶受到最终产物的抑制,称为反馈抑制;有的被底物激活
P299 图4-45反馈抑制与底物激活
正调节物:一般是别构酶的底物,可以激活别构酶。
负调节物:可以抑制别构酶,一般是代谢序列的最终产物。
通过多酶体系的自我调节(反馈抑制和底物激活),可使代谢过程得以协调地、有条不紊地合理进行。
下面讨论具体到每个酶是怎样调节的
二、 酶活性的调节控制和调节酶
调节酶:活性可被调节的酶,主要是别构酶和共价调节酶。
(一) 别构效应的调控
别构效应:调节物(效应物)与别构酶分子中的别构中心(调节中心)结合后,诱导产生或稳定住酶分子的某种构象,使酶活性中心对底物的结合催化作用受到影响,从而调节酶促反应的速度。
(1)、 别构酶的结构特点和性质
(1) 已知的别构酶都是寡聚酶,含有两个或两个以上亚基
(2) 具有活性中心和别构中心(调节中心),活性中心负责底物结合和催化,别构中心负责调节酶反应速度。活性中心和别构中心处在不同的亚基上或同一亚基的不同部位上。
(3) 多数别构酶不止一个活性中心,活性中心间有同种效应,底物就是调节物:有的别构酶不止一个别构中心,可以接受不同的代谢物的调节。
(4) 别构酶由于同位效应和别构效应,不遵循米式方程,动力学曲线也不是典型的双曲线型,而是S型(同位效应为正协同效应)和压低的近双曲线(同位效应为负协同效应)。
(2)、 别构酶的动力学曲线
① 同位效应为正协同效应的别构酶是S型曲线
P303 图4-46 4-47
这种S形曲线体现为,当底物浓度发生较小变化时,别构酶可以极大程度地控制反应速度,这是别构酶可以灵活地调节反应速度的原因。
米氏酶:[S]0.9/[S]0.1=81
别构酶:[S]0.9/[S]0.1=3
表明当底物浓度发生较小变化时,如上升3倍,别构酶的酶促反应速度可以从0.1Vmax升至0.9Vmax 。
当增加正调节物浓度时Km减小,亲和力增大,协同性减小:当增加负调节物的浓度时Km增加,亲和力减小,协同性增大(对底物浓度的反应灵敏度增加)。
② 同位效应为负协同效应的别构酶是近似双曲线
P304图4-48
负协同效应时酶的反应速度对底物浓度的变化不敏感
(3)、 别构酶调节活性的机理
① 序变模型:
酶分子中亚基结合底物后,构象逐个地依次变化。
② 齐变模型:
(4)、 别构酶的鉴定
① S型曲线是必要但不充分条件
② 脱敏作用
③ [S]0.9/[S]0.1
Rs=81 米氏酶
Rs<81 正协同
Rs>81 负协同
④ Hill系数法
(二) 可逆共价修饰的调控(共价调节酶)
共价调节酶:酶分子被其它的酶催化进行共价修饰,从而在活性形式与非活性形式之间相互转变。
举例:糖原磷酸化酶
P313 图4-57
信号的级联放大:
1分子磷酸化酶激酶,活化生成几千个磷酶化酶a
1分子磷酸化酶a,催化生成几千个1-P-G
共价调节酶的两种常见类型
①磷酸化 去磷酸化 -OH ATP
②腺苷酰化 脱腺苷酰化 腺苷酰基由ATP提供
(三) 酶原的激活
具有不可逆性。属于此类的有消化系统中的酶(胰蛋白酶,胰凝乳蛋白酶,胃蛋白酶)和血液凝固系统中的酶。
(1)、 胰凝乳蛋白酶原的激活(由胰蛋白酶激活)
P314 图4-58
(2)、 胰蛋白酶对胰脏蛋白酶原的激活
肠激酶
胰蛋白酶原 胰蛋白酶
胰凝乳蛋白酶原 弹性蛋白酶原
胰蛋白酶
胰凝乳蛋白酶 弹性蛋白酶
羧肽酶原 羧肽酶
(四) 专一性调控蛋白(调控因子)对酶活性的调节控制
钙调蛋白、激素结合蛋白,促进或抑制特异的酶活性
第六节 酶与抗体——抗体酶 abzyme(antibody enzyme)
参阅 P293
又称催化性抗体(catalytic antibody),是一种具有催化功能的抗体分子。
过渡态理论:酶与底物不是在基态,而是在过渡态结构互补,亲和力最强,释放出的结合能使过渡态结合物能级降低,利于反应物分子越过能垒,加速反应。
而抗体与抗原是基态结合。
第七节 同工酶、诱导酶
1、 同工酶
能催化同一种化学反应,但其酶蛋白本身的分子结构不同的一组酶,存在于生物的同一种属或同一个体的不同组织中,甚至同一组织、同一细胞中。
哺乳动物乳酸脱氢酶有5种
CH3CHOH-COO-+NAD+ LDH CH3COCOO-+NADH+H+
均由4个亚基组成
HHHH 在心肌中占优势
HHHM
HHMM
HMMM
MMMM 在骨骼肌中占优势
2、 诱导酶
酶可相对地区分为结构酶和诱导酶。
结构酶:指正常细胞内存在的酶,它的含量较稳定,受外界因素影响很小。
诱导酶:在正常细胞中含量极少或没有,当细胞中加入特定诱导物后,诱导产生的酶,含量在诱导物存在下显著增高,诱导物往往是该酶的底物或底物类似物。
如:大肠杆菌中的β-半乳糖苷酶
E.coli在含Glc的培养基中
E.coli在只含乳糖的培养基中:Glc-β(1→4)Gal苷
第八节 酶工程
生化笔记--沈同(适用第2版及第3版)第六章 核酸
核酸是遗传物质
1868年瑞士Miesher.从脓细胞的细胞核中分离出可溶于碱而不溶于稀酸的酸性物质。
间接证据:同一种生物的不同种类的不同生长期的细胞,DNA含量基本恒定。
直接证据:T2噬菌体DNA感染E.coli
用35S标记噬菌体蛋白质,感染E.coli,又用32P标记噬菌体核酸,感染E.coli
DNA、RNA的分布(DNA在核内,RNA在核外)。
第一节 核酸的化学组成
核酸是一种线形多聚核苷酸,基本组成单位是核苷酸。
结构层次: 核 酸
核苷酸
磷酸 核苷
戊糖 碱基
组成核酸的戊糖有两种::D-核糖和D-2-脱氧核糖,据此,可以将核酸分为两种:核糖核酸(RNA)和脱氧核糖核酸(DNA)
P330 表5-1 两类核酸的基本化学组成
一、 碱基
1. 嘌呤碱: 腺嘌呤 鸟嘌呤
2. 嘧啶碱: 胞嘧啶 尿嘧啶 胸腺嘧啶
P331 结构式
3. 修饰碱基
植物中有大量5-甲基胞嘧啶。
E.coli噬菌体中,5-羟甲基胞嘧啶代替C。
稀有碱基:100余种,多数是甲基化的产物。
DNA由A、G、C、T碱基构成。
RNA由A、G、C、U碱基构成。
二、 核苷
核苷由戊糖和碱基缩合而成,糖环上C1与嘧啶碱的N1或与嘌呤碱的N9连接。
核酸中的核苷均为β-型核苷
P332 结构式 腺嘌呤核苷 胞嘧啶脱氧核苷
DNA 的戊糖是:脱氧核糖
RNA 的戊糖是:核糖
三、 核苷酸
核苷中戊糖C3、C5羟基被磷酸酯化,生成核苷酸。
1、 构成DNA、RNA的核苷酸
P333表5-3
2、 细胞内游离核苷酸及其衍生物
①核苷5’-多磷酸化合物
ATP、GTP、CTP、ppppA、ppppG
在能量代谢和物质代谢及调控中起重要作用。
②环核苷酸
cAMP(3’,5’-cAMP) cGMP(3’,5’-cGMP)
它们作为质膜的激素的第二信使起作用,cAMP调节细胞的糖代谢、脂代谢。
③核苷5’多磷酸3’多磷酸化合物
ppGpp pppGpp ppApp
④核苷酸衍生物
HSCoA、 NAD+、NADP+、FAD等辅助因子。
GDP-半乳糖、GDP-葡萄糖等是糖蛋白生物合成的活性糖基供体。
第二节 DNA的结构
一级:脱氧核苷酸分子间连接方式及排列顺序。
二级:DNA的两条多聚核苷酸链间通过氢键形成的双螺旋结构。
三级:DNA双链进一步折叠卷曲形成的构象。
一、 DNA的一级结构
DNA的一级结构是4种脱氧核苷酸(dAMP、dGMP、dCMP、dTMP)通过3/、5/-磷酸二酯键连接起来的线形多聚体。3/、5/-磷酸二酯键是DNA、RNA的主链结构 。
P334 图 5-1
书写方法:5/ → 3/:
5’-pApCpTpG-3’,或5’…ACTG…3’(在DNA中,3/-OH一般是游离的)
在DNA分子中,不变的骨架成分磷酸二酯键被逐渐省略,真正代表DNA生物学意义的是碱基的排列顺序。
遗传信息贮存在DNA的碱基排列顺序中,生物界生物的多样性即寓于DNA分子4种核苷酸千变万化的精确的排列顺序中。
二、 DNA的二级结构
1953年,Watson和Crick根据Chargaff 规律和DNA Na盐纤维的X光衍射数据提出了DNA的双螺旋结构模型。
1、 Watson-Crick双螺旋结构建立的根据
①Chargaff 规律 1950年
a. 所有DNA中,A=T,G=C 且A+G=C+T。
P334表5—4。
b. DNA的碱基组成具有种的特异性,即不同生物的DNA皆有自己独特的碱基组成。
c. DNA碱基组成没有组织和器官的特异性。
d. 年龄、营养状况、环境等因素不影响DNA的碱基组成。
② DNA的Na盐纤维和 DNA晶体的X光衍射分析。
相对湿度92%,DNA钠盐结晶,B—DNA。
相对湿度75%,DNA钠盐结晶,A—DNA。
Z—DNA。
生物体内DNA均为B—DNA。
Franklin 的工作
2、 Watson-Crick双螺旋结构模型
P335 图5—2
a.两条反平行的多核苷酸链绕同一中心轴相缠绕,形成右手双股螺旋,一条5’→3’,另一条3’→5’
b.嘌呤与嘧啶碱位于双螺旋的内侧,磷酸与脱氧核糖在外侧。磷酸与脱氧核糖彼此通过3/、5/-磷酸二酯键相连接,构成DNA分子的骨架。
宽1.2 nm 宽0.6nm
大沟 小沟
深0.85nm 深0.75nm
c.螺旋平均直径2nm
每圈螺旋含10个核苷酸
碱基堆积距离:0.34nm
螺距:3.4nm
d.两条核苷酸链,依靠彼此碱基间形成的氢链结合在一起。碱基平面垂直于螺旋轴。A=T、G=C
P336 图5—4
碱基互补原则具有极重要的生物学意义,DNA的复制、转录、反转录等的分子基础都是碱基互补。
3、 稳定双螺旋结构的因素
①碱基堆积力(主要因素) 形成疏水环境。
②碱基配对的氢键。GC含量越多,越稳定。
③磷酸基上的负电荷与介质中的阳离子或组蛋白的正离子之间形成离子键,中和了磷酸基上的负电荷间的斥力,有助于DNA稳定。
④碱基处于双螺旋内部的疏水环境中,可免受水溶性活性小分子的攻击。
三、 DNA二级结构的不均一性和多型性
(一) DNA二级结构的不均一性
1、 反向重复序列(回文序列)
DNA序列中,以某一中心区域为对称轴,其两侧的碱基对顺序正读和反读都相同,即对称轴一侧的片段旋转180°后,与另一侧片段对称重复。
较长的回文结构,在某些因素作用下,可形成茎环式的十字结构和发夹结构。功能还不完全清楚,但转录的终止作用与回文结构有关。
较短的回文序列,可作为一种特别信号,如限制性核酸内切酶的识别位点。
2、 富含A T的序列
高等生物中,A+T与C+G的含量差不多相等,但在它们的染色体的某一区域,A T含量可能很高。
在很多有重要调节功能(不是蛋白质编码区)的DNA区段都富含A T碱基对。特别是在复制起点和启动的Pribnow框的DNA区中,富含A T对。这对于复制和转录的起始十分重要,因为G C对有三个氢键,而A T对只有两个氢键,此处双键易解开。
(二) DNA二级结构的多型性
P339 表5-6 A-、B-、Z-DNA的比较
1、 B—DNA:典型的Watson-Crick双螺旋DNA
右手双股螺旋
每圈螺旋10.4个碱基对
每对
螺旋扭角36°
螺距:3.32nm
碱基倾角:1°
2、 A-DNA
在相对湿度75%以下所获得的DNA纤维。
A-DNA也是右手双螺旋,外形粗短。
RNA-RNA、RNA-DNA杂交分子具有这种结构。
3、 Z-DNA
左手螺旋的DNA。
天然B-DNA的局部区域可以形成Z0-DNA。
4、 DNA三股螺旋
在多聚嘧啶和多聚嘌呤组成的DNA螺旋区段,序列中有较长的镜像重复时,可形成局部三股螺旋,称H-DNA。
镜像重复:
TAT配对
C+GC酸对
DNA的三链结构常出现在DNA复制、重组、转录的起始或调节位点,第三股链的存在可能使一些调控蛋白或RNA聚合酶等难以与该区段结合,从而阻遏有关遗传信息的表达。
四、 环状DNA
生物体内有些DNA是以双链环状DNA的形式存在,包括:
某些病毒DNA
某些噬菌体DNA
某些细菌染色体DNA
细菌质粒DNA
真核细胞中的线粒体DNA、叶绿体DNA
1、 环形DNA的不同构象
P340 图5-8 松驰环、解链环、负超螺旋
(1)、 松弛环形DNA
线形DNA直接环化
(2)、 解链环形DNA
线形DNA拧松后再环化
(3)、 正超螺旋与负超螺旋DNA
线形DNA拧紧或拧松后再环化,成为超螺旋结构。
绳子的两股以右旋方向缠绕,如果在一端使绳子向缠紧的方向旋转,再将绳子两端连接起来,会产生一个左旋的超螺旋,以解除外加的旋转造成的胁变,这样的超螺旋叫正超螺旋。
如果在绳子一端向松缠方向旋转,再将绳子两端连接起来,会产生一个右旋的超螺旋,以解除外加的旋转所造成的胁变,这样的超螺旋称负超螺旋。
对于右手螺旋的DNA分子,如果每圈初级螺旋的碱基对数小于10.4,则其二级结构处于紧缠状态,是正超螺旋。
如果每圈初级螺旋的碱基对数大于10.4,则其二级结构处于松缠状态,是负超螺旋。
2、 环形DNA的拓扑学特性
以260bp组成的线形B-DNA为例,螺旋周数260/10.4=25。
P340 图25-8 松驰环、解链环、负超螺旋
①连环数(L)
DNA双螺旋中,一条链以右手螺旋绕另一条链缠绕的次数,以L表示。
松驰环:L=25
解链环:L=23
超螺旋:L=23
②缠绕数(T)
DNA分子中的Watson-Crick螺旋数目,以T表示
松驰环T=25
解链环T=23
超螺旋T=25
③超螺旋周数(扭曲数W)
松驰环W=0
解链环W=0
超螺旋W= -2
L=T+W
④比连环差(λ)
表示DNA的超螺旋程度
λ=(L—L0)/L0
L0是指松驰环形DNA的L值
天然DNA的超螺旋密度一般为-0.03~-0.09,平均每100bp上有3-9个负超螺旋。
负超螺旋DNA是由于两条链的缠绕不足引起,很易解链,易于参加DNA的复制、重组和转录等需要将两条链分开才能进行的反应。
3、 拓扑异构酶
此酶能改变DNA拓扑异构体的L值。
①拓扑异构酶酶I(拧紧)
能使双链负超螺旋DNA转变成松驰形环状DNA,每一次作用可使L值增加1,同时,使松驰环状DNA转变成正超螺旋。
②拓扑异构酶酶II(拧松)
能使松驰环状DNA转变成负超螺旋形DNA,每次催化使L减少2,同时能使正超螺旋转变成松驰DNA。
五、 染色体的结构
1、 大肠杆菌染色体
大肠杆菌染色体是由4.2×106bp组成的双链环状DNA分子,约3000个基因。
大肠杆菌DNA结合蛋白: 每个细胞
H 两个28KD的相同亚基 30000个二聚体
HU 两个各9KD的不同亚基 40000个二体聚体
HLP1 17KD的亚基 20000个单体
P 3KD的亚基 未知
这些DNA结合蛋白,使4.2×106bp的E.coli染色体DNA压缩成为一个手脚架形结构,结构中心是多种DNA结合蛋白,DNA双螺旋分子有许多位点与这些蛋白结合,形成约100个小区,每个小区的DNA都是负超螺旋,一个小区的DNA有两个端点被蛋白质固定,每个小区相对独立。
图
用极微量的DNA酶I处理时,只能使少量小区的DNA成为松驰状态,而其它小区仍然保持超螺旋状态。
2、 真核生物染色体
主要由组蛋白和DNA组成。
组蛋白是富含碱性a.a(Lys、Arg)的碱性蛋白质,根据Lys/Arg比值不同,可分为H1、H2A、H2B、H3、H4五种,均为单链蛋白质,分子量11000-21000。
H2A、H2B、H3、H4各两分子对称聚集成组蛋白八聚体。
146bp长度的DNA双螺旋盘绕在八聚体上形成核小体。
核小体间DNA长度15-100bp(一般60bp)其上结合有H1
图
2H2A、2H2B、2H3、2H4组蛋白八聚体 146bpDNA 核小体
串联 染色质 折叠 染色体
DNA(直径2nm)
盘绕组蛋白八聚体上,结合H1,压缩比1/7
核小体(一级结构)
螺旋化,压缩比1/6
螺线管(二级结构)
再螺旋化,压缩比1/40
超螺线管(三级结构)
折叠,压缩比1/5
染色单体(四级结构)
总压缩比:1/8400~1/10000
六、 DNA的生物学功能
首次直接证明DNA的遗传功能的是Avery的肺炎双球菌转化实验。
P342 1~4 Avery的肺炎双球菌转化实验
第三节 RNA的结构
一、 RNA的一级结构
RNA是AMP、GMP、CMP、UMP通过3/、5/磷酸二酯键形成的线形多聚体。
P343 图5-10 RNA基本结构 医学全在线 www.med126.com
① 组成RNA的戊糖是核糖
② 碱基中RNA的U替代DNA中的T,此外,RNA中还有一些稀有碱基。
③ 天然RNA分子都是单链线形分子,只有部分区域是A-型双螺旋结构。双螺旋区一般占RNA分子的50%左右。
二、 RNA的类型
细胞中的RNA,按其在蛋白质合成中所起的作用,主要可分为三种类型。
核糖体RNA rRNA
转运 RNA tRNA
信使 RNA mRNA
此外,真核生物细胞中有少量核内小RNA(small nuclear RNA snRNA)
P344 表5-7 大肠杆菌中的RNA
沉降系数:单位离心场中的沉降速度,以S为单位,即10-13秒。
如23S rRNA ,单位离心场中沉降 23×10-13秒
5S rRNA ,单位离心场中沉降 5×10-13秒
三、 tRNA的结构
tRNA约占全部RNA的15%
主要功能:在蛋白质生物合成过程中转运氨基酸。
已知一级结构的tRNA有160种,每种tRNA可运载一种特定的a.a,一种a.a可由一种或多种tRNA运载。