生物化学笔记 针对王镜岩等《生物化学》第三版(17)
本站小编 免费考研网/2019-03-28
嘌吟毒素(puromycin):通过整合到生长着的肽链,引起肽链合成提前终止来抵制多肽名链合成的一种抗生素。
开放读码框(open reading frame):DNA或RNA序列中一段不含终止密码的连续的非重叠核苷酸密码。
信号肽(signal peptide):常指新合成多肽链中用于指导蛋白质夸膜转移(定位)的N-末端氨基酸序列(有时不一定在N端)。
第十七章 RNA的合成与加工
第一节 DNA转录生成RNA
一、定义
(一)转录单位
(二)启动子(promoter)
(三)终止子(terminator)
二、RNA聚合酶
(一)酶的特性:以4种NTP为底物,需模板和镁离子,合成方向也是5’-3’,但不需要引物。
(二)酶的分类:
1.噬菌体的RNA聚合酶结构简单,是单链蛋白,功能也简单。
2.细菌则具有复杂的多亚基结构(450Kd),可识别并转录超过1000个转录单位。
3.真核生物的酶有多种,根据a-鹅膏蕈碱(环状8肽,阻断RNA延伸)的抑制作用可分为三类:聚合酶A对它不敏感,分布于核仁,转录核糖体RNA;聚合酶B对低浓度敏感,存在于核质,转录信使RNA;聚合酶C位于核质,对高浓度敏感,转录小分子量RNA,如转运RNA、5SRNA等。各种RNA聚合酶都是由10-15种不同亚基组成的多亚基复合物。
4. 线粒体和叶绿体也有RNA聚合酶,结构简单,能合成所有种类RNA。
(三)酶的构成:大肠杆菌的全酶有5个亚基(α2ββ’ωσ),含2个锌。β催化形成磷酸二酯键,β’结合模板,σ亚基称为起始因子,可使RNA聚合酶稳定地结合到启动子上。ββ’ωσ称为核心酶。σ亚基在不同菌种间变动较大,而核心酶比较恒定。酶与不同启动子的结合能力不同,不同启动因子可识别不同的启动子。σ70识别启动子共有序列,σ32识别热休克基因,σ60在氮饥饿时起作用。σ通过随机移动起作用,不需解链。
(四)模板:以完整双链DNA为模板,其中仅一条链可转录。转录时局部解链,转录后DNA重新形成双螺旋结构,所以DNA是全保留的。
三、转录过程
分为起始、延长和终止三个阶段。起始包括对双链DNA特定部位的识别、局部(17bp)解链以及在最初两个核苷酸间形成磷酸二酯键。第一个核苷酸掺入的位置称为转录起点。
起始后起始因子离开,核心酶构象改变,沿模板移动,转录生成杂交双链(12bp),随后DNA互补链取代RNA链,恢复DNA双螺旋结构。延伸速度为50nt/s,酶移动17nm。错误几率为10-5。
聚合酶到达终点时,在终止辅助因子的帮助下停止反应,酶和RNA链脱落,转录结束。
四、启动子和转录因子
(一)定义:酶识别、结合、开始转录的一段DNA序列。强启动子2秒钟启动一次转录,弱启动子10分钟一次。
(二)原核生物:大肠杆菌在起点上游约-10碱基对处有保守序列TATAAT,称为pribnow box,有助于局部解链。在其上游还有TTGACA,称为-35序列,提供RNA聚合酶识别的信号。
(三)真核生物:复杂,差异较大。
1.信使RNA的启动子通常有三个保守区,-25到-30有TATA框,是解链位置,并决定转录起点;-75位置有CAAT框,与RNA聚合酶的结合有关;更上游还有GC框,某些转录因子可结合。后两个称为上游因子,对转录起始频率有较大影响。
2. 小RNA的启动子在转录区内部,有一些辅助因子帮助RNA聚合酶识别。
五、终止子和终止因子
(一)定义
(二)所有原核生物的终止子在终点之前都有一个回文结构,可使酶减慢移动或暂停合成。大肠杆菌有两类终止子:
1. 简单终止子,回文区有一段富含GC对的序列,回文后有寡聚尿苷。
2.依赖ρ的终止子,必须在有ρ因子时才能发挥作用,不含GC对,也无寡聚尿苷。ρ因子是蛋白质,可与酶作用,释放RNA,并使酶脱离。
(三)某些因子可使酶越过终止子继续转录,称为通读。常见于某些噬菌体的时序控制,早期基因与晚期基因以终止子相隔,早期基因产生抗终止因子,使发生通读以表达晚期基因。
六、转录的调控
(一)遗传信息的表达有时序调控和适应调控,转录水平的调控是关键环节,因为这是表达的第一步。转录调控主要发生在起始和终止阶段。
(二)操纵子是细菌基因表达和调控的单位,有正调节和负调节因子。阻遏蛋白的作用属于负调控。环腺苷酸通过其受体蛋白(CRP)促进转录,可促进许多诱导酶的合成。操纵子可构成综合性调控网络,如SOS反应等。对终止子也有调控作用,如衰减子。
(三)真核生物不组成操纵子,而是通过激素、生长因子等进行调控。某些DNA序列对转录起增强作用,称为增强子。
第二节 转录后加工
一、原核生物
"(一)核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。16S和23S之间常由转运RNA隔开。转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。前体加工时还进行甲基化,产生修饰成分,特别是a-甲基核苷。N4,2’-O二甲基胞苷(m4Cm)是16S核糖体RNA特有成分。5S核糖体RNA一般无修饰成分。"
(二)转运RNA:有60个基因,其加工包括:
1.内切酶在两端切断,大肠杆菌RNA酶P是5’成熟酶
2.外切酶从3’修剪,除去附加顺序。RNA酶D是3’成熟酶
3.3’端加上CCAOH,由转运RNA核苷酰转移酶催化,某些转运RNA已有,切除附加序列后即露出。
4.核苷的修饰:修饰成分包括甲基化碱基和假尿苷,修饰酶具有高度特异性。甲基化对碱基和序列都有严格要求,一般以S-腺苷甲硫氨酸为甲基供体。
(三)信使RNA:细菌多数不用加工,转录与翻译是偶联的。也有少数多顺反子信使RNA必须由内切酶切成较小的单位,然后翻译。如核糖体大亚基蛋白与RNA聚合酶的b亚基基因组成混合操纵子,转录后需经RNA酶III切开,各自翻译。因为RNA聚合酶的合成水平低得多,切开有利于各自的翻译调控。较长的RNA会产生高级结构,不利于翻译,切开可改变其结构,从而影响其功能。
二、真核生物
(一)核糖体RNA:基因拷贝数多,在几十到几千之间。基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。核仁是其转录、加工和装配成核糖体的场所。RNA酶III等核酸内切酶在加工中起重要作用。5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基。核糖体RNA可被甲基化,主要在核苷2’羟基,比原核生物甲基化程度高。多数核糖体RNA没有内含子,有些有内含子但不转录。
(二)转运RNA:由RNA聚合酶III转录,加工与原核相似,但3’端的CCA都是后加的,还有2’-O-甲基核糖。
(三)信使RNA:真核生物编码蛋白质的基因以单个基因为转录单位,但有内含子,需切除。信使RNA的原初转录产物是分子量很大的前体,在核内加工时形成大小不等的中间物,称为核内不均一RNA(hnRNA)。其加工过程包括:
1.5’端加帽子:在转录的早期或转录终止前已经形成。首先从5’端脱去一个磷酸,再与GTP生成5’,5’三磷酸相连的键,最后以S-腺苷甲硫氨酸进行甲基化,形成帽子结构。帽子结构有多种,起识别和稳定作用。
2. 3’端加尾:在核内完成。先由RNA酶III在3’端切断,再由多聚腺苷酸聚合酶加尾。尾与通过核膜有关,还可防止核酸外切酶降解。
3. 内部甲基化:主要是6-甲基腺嘌呤,在hnRNA中已经存在。可能对前体的加工起识别作用。
三、RNA的拼接
(一)转运RNA的拼接:由酶催化,酶识别共同的二级结构,而不是序列。通常内含子插入到靠近反密码子处,与反密码子配对,取代反密码子环。第一步由内切酶切除插入序列,不需ATP;第二步由RNA连接酶连接,需要ATP。
(二)四膜虫核糖体RNA的拼接:某些四膜虫26S核糖体RNA基因中有一个内含子,其拼接只需一价和二价阳离子及鸟苷酸或鸟苷存在即可自发进行。其实质是磷酸酯的转移反应,鸟苷酸起辅助因子的作用,提供游离3’羟基。
"(三)信使RNA:真核生物编码蛋白质的核基因的内含子属于第二类内含子,左端为GT,右端为AG。先在左端切开,产生的5’末端与3’端上游形成5’,2’-磷酸二酯键,构成套索结构。然后内含子右端切开,两个外显子连接起来。通过不同的拼接方式,可形成不同的信使RNA。"
第三节 RNA的复制
一、噬菌体QbRNA的复制
其RNA是单链,正链,侵入大肠杆菌后立即翻译,产生复制酶的b亚基,与宿主的三个亚基(α为核糖体蛋白,γ、δ均为肽链延长因子)构成复制酶,进行复制。先以正链为模板合成负链,再根据负链合成正链。合成负链时需要宿主的两个蛋白因子,合成正链则不需要,所以可大量合成。病毒的蛋白质合成受RNA高级结构的调控。
二、病毒RNA复制的主要方式
(一)病毒含正链RNA,先合成复制酶,复制后合成其他蛋白质进行装配。如噬菌体Qb及灰质炎病毒。
(二)病毒含负链和复制酶,先合成正链,再合成病毒蛋白和复制病毒RNA。如狂犬病毒。
(三)病毒含双链RNA和复制酶,如呼肠孤病毒。先复制正链,再翻译成病毒蛋白,最后合成负链,形成双链RNA分子。
(四)致癌RNA病毒:如白血病病毒和肉瘤病毒,先逆转录生成DNA前病毒,再转录、翻译。
第四节 RNA生物合成的抑制剂
一、碱基类似物
有些人工合成的碱基类似物能干扰和抑制核酸的合成。作用方式有以下两类:
(一)作为代谢拮抗物,直接抑制核苷酸生物合成有关酶类。如6-巯基嘌呤进入体内后可转变为巯基嘌呤核苷酸,抑制嘌呤核苷酸的合成。可作为抗癌药物,治疗急性白血病等。此类物质一般需转变为相应的核苷酸才能表现出抑制作用。
(二)进入核酸分子,形成异常RNA或DNA,影响核酸的功能并导致突变。5-氟尿嘧啶类似尿嘧啶,可进入RNA,与腺嘌呤配对或异构成烯醇式与鸟嘌呤配对,使A-T对转变为G-C对。因为正常细胞可将其分解,而癌细胞不能,所以可选择性抑制癌细胞生长。
二、DNA模板功能抑制物
(一)烷化剂:带有活性烷基,能使DNA烷基化。鸟嘌呤烷化后易脱落,双功能烷化剂可造成双链交联,磷酸基烷化可导致DNA链断裂。通常有较大毒性,引起突变或致癌。
(二)放线菌素类:可与DNA形成非共价复合物,抑制其模板功能。包括一些抗癌抗生素。
(三)嵌入染料:含有扁平芳香族发色团,可插入双链DNA相邻碱基对之间。常含丫啶或菲啶环,与碱基大小类似,可在复制时增加一个核苷酸,导致移码突变。如溴乙啶。
三、RNA聚合酶抑制剂
(一)利福霉素:抑制细菌RNA聚合酶活性。
(二)利链菌素:与细菌RNA聚合酶b亚基结合,抑制RNA链的延长。
a-鹅膏蕈碱:抑制真核生物RNA聚合酶。
第十八章 蛋白质的合成与运转
第一节 概述
一、遗传密码
(一)定义:密码子、遗传密码字典
(二)基本特性
1.无标点:是连续阅读的,若插入或删除一个碱基,会使以后的读码发生错误,称为移码。
2.一般不重叠:只有少数基因的遗传密码是重叠的。
3.简并性:多数氨基酸有几个不同的密码子,只有色氨酸和甲硫氨酸仅一个密码子。编码相同氨基酸的密码子称为同义密码子。简并性可减少有害突变,也使DNA的碱基组成有较大的变化余地,在物种的稳定性上起一定作用。
4.摆动性:密码子的专一性主要由头两位碱基决定,第三位不重要,称为摆动性。反密码子上的I可与U、A、C配对,G可与U配对。
"5.UAG,UAA,UGA不编码氨基酸,作为终止密码子,只能被肽链释放因子识别。AUG是起始密码子。"
6.通用性:在各种生物中几乎完全通用,但发现线粒体有所不同,如人线粒体中UGA编码色氨酸。
二、核糖体
(一)结构
1.核糖体RNA:有很多双螺旋区,16S在识别起始位点中起重要作用。
2.核糖体蛋白:多数为纤维状,极少数球状。
3.结构模型:椭圆球状,两亚基结合面上有较大空隙,蛋白质的合成在此进行。大亚基上有两个转运RNA位点:氨酰基位点(A)和肽酰基位点(P),还有一个水解GTP的位点。两个亚基的接触面上有信使RNA结合位点,核糖体上还有许多蛋白因子结合位点。
(二)多核糖体:由一个信使RNA与一些单个核糖体结合而成,呈念珠状。这样可以同时合成许多肽链,提高了翻译的效率。6个以上的多核糖体具有稳定的结构。
第二节 翻译的过程
一、准备
(一)肽链的合成是由氨基端向羧基端进行的,速度很快,大肠杆菌每秒可聚合20个氨基酸。信使RNA是从5’向3’翻译的。
(二)氨基酸的活化:由氨酰tRNA合成酶催化,分两步:
1. 形成氨基酸-AMP-酶复合物:氨基酸的羧基与5’磷酸形成高能酸酐键而活化。
2.转移:氨基酸转移到转运RNA3’末端,与3’或2’羟基结合。总反应为:
氨基酸+tRNA+ATP=氨酰tRNA+AMP+PPi
此酶专一性很高,只作用于L-氨基酸,每种氨基酸都有一个专一的酶。酶有校对机制,一方面对转运RNA有专一性,另一方面还有水解位点,可水解错误酰化的氨基酸。
(三)转运RNA的作用:起接头作用,根据密码子决定氨基酸的去向。转运RNA反密码子的某些突变可抵销一些有害突变,称为校正突变。
二、肽链合成的起始
(一)起始信号:起始密码子是AUG,其上游约10个核苷酸处有一段富含嘌呤的序列,可与16S rRNA的3’端互补,与起始有关。
(二)起始复合物的形成:
1.起始氨基酸:是N-甲酰甲硫氨酸,其转运RNA也有所不同,称为tRNAf,与甲硫氨酸结合后被甲酰化酶以甲酰四氢叶酸甲基化,生成fMet-tRNAf。
2.30S起始复合物:信使RNA先与小亚基结合,在起始因子3(IF3)的参与下形成mRNA-30S-IF3复合物,然后在IF1和IF2参与下与fMet-tRNAf和GTP结合,并释放IF3,形成30S起始复合物。
3.30S起始复合物与大亚基结合,水解GTP,释放IF1和IF2,形成70S起始复合物。此时转运RNA占据肽酰位点,空着的氨酰位点可接受另一个转运RNA,为肽链延长作好了准备。
三、肽链的延伸
(一)转运RNA进入氨酰位点:需ATP和两种延伸因子参加。EFTu与GTP结合,再与转运RNA形成复合物,才能与起始复合物结合。然后释放出EFTu-GDP,与EFTs和GTP反应,重新生成EFTu-GTP,参加下一轮反应。EFTu水解GTP前后构象不同,错误的转运RNA会离去,而正确的则与两种状态都有强相互作用。EFTu-GDP离去之前不能形成肽键,它停留的时间越长,错误的转运RNA被排除的几率越大。这是翻译的限速步骤。
(二)肽键的形成:肽酰基转移到氨酰位点,同时形成肽键。需大亚基上的肽酰转移酶和钾离子参加。肽酰位点的转运RNA成为空的。嘌呤霉素的结构与氨酰tRNA类似,可形成肽酰嘌呤霉素,易脱落,使合成中断。
(三)移位:指核糖体沿信使RNA移动一个密码子。原肽酰位点的转运RNA离开,肽酰tRNA进入肽酰位点。需GTP和延伸因子G(EFG),也叫移位酶。GTP的水解使EFG释放出来。延伸与移位是两个分离的独立过程。
四、终止
(一)终止信号的识别:
有三种蛋白因子:RF1识别UAA、UAG,RF2识别UAA、UGA。RF3协助肽链释放。
(二)肽链释放:释放因子使肽酰转移酶水解并释放转运RNA,然后核糖体离开,IF3使核糖体解离,并与小亚基结合,以防重新聚合。
五、真核生物的合成
(一)核糖体:更大,为60S和40S。
(二)起始氨基酸:是甲硫氨酸,但其转运RNA无TΨC序列。
(三)起始信号:密码子为AUG,无富含嘌呤的序列。因为是单顺反子,只有一个起点,所以小亚基先与帽子结合,向3’端移动寻找即可。
(四)起始复合物:80S,起始因子(eIF)有多种。需GTP和ATP。
(五)延伸因子和终止因子:EF1a相当于EFTu,EF1bg相当于EFTs。终止因子(eRF)称为信号释放因子。
(六)蛋白激酶参与调节:可使eIF2磷酸化,抑制下一轮起始,小亚基不能与转运RNA结合,翻译受抑制。只有脱磷酸后才能重新起作用。缺乏血红素时即激活蛋白激酶,抑制血红蛋白合成。
六、抑制剂
白喉毒素可使移位酶(EF2)ADP-核糖化,抑制真核生物的移位作用。亚胺环己酮只作用于80S核糖体,抑制真核生物的翻译。氯霉素、链霉素、四环素、新霉素、卡那霉素只作用于原核生物,链霉素、新霉素、卡那霉素与小亚基结合,引起错读。
第三节 多肽的运输和加工
一、信号肽
(一)特点:长度为13-26个残基,氨基端至少有一个碱性残基,中部有10-15个残基的疏水肽段,羧基端有信号肽酶酶切位点。一般位于新生肽的氨基端,某些位于多肽的中部。
(二)功能:信号肽合成后被信号识别体(SRP)识别。信号识别体与核糖体结合,使肽链延伸暂停,将核糖体带到内质网,形成粗糙内质网。这里合成溶酶体蛋白、分泌蛋白和构成质膜骨架的蛋白。信号识别体与内质网上的停泊蛋白结合,将核糖体送入多肽移位装置,信号识别体被释放,肽链继续延伸。合成的肽链进入内质网小腔。
二、在内质网的修饰
多肽在内质网的修饰包括信号肽的切除、二硫键的形成、高级结构的折叠及核心糖化。在内质网中以长萜醇磷酸酯为载体合成核心糖链,然后转移到蛋白质的天冬酰胺或丝氨酸、苏氨酸上。
三、高尔基体的作用
高尔基体可对核心糖链进行修饰和调整,称为末端糖化。多肽在此根据各自的结构进行分类,被运往溶酶体、分泌粒和质膜等目的地。
四、线粒体和叶绿体蛋白的合成
他们可编码全部RNA,但所需的蛋白多数由核基因组编码,在游离核糖体中合成。这些蛋白含有线粒体定向肽或叶绿体转移肽,起信号肽的作用。
第十九章 代谢调空
第一节 代谢途径之间的联系
一、代谢网络
(一)糖、脂和蛋白质的关系:通过6-磷酸葡萄糖、丙酮酸和乙酰辅酶A三个中间物相互联系。脂类中的甘油、糖类和蛋白质之间可互相转化,脂肪酸在植物和微生物体内可通过乙醛酸循环由乙酰辅酶A合成琥珀酸,然后转变为糖类或蛋白质,而动物体内不存在乙醛酸循环,一般不能由乙酰辅酶A生成糖和蛋白质。
(二)核酸与代谢的关系:核酸不是重要的碳源、氮源和能源,但核酸通过控制蛋白质的合成可影响细胞的组成成分和代谢类型。许多核苷酸在代谢中起着重要作用,如ATP、辅酶等。另一方面,核酸的代谢也受其他物质,特别是蛋白质的影响。
(三)各种物质在代谢中是彼此影响、相互转化和密切联系的。三羧酸循环不仅是各种物质共同的代谢途径,而且是他们互相联系的渠道。
二、分解代谢与合成代谢的单向性
虽然酶促反应是可逆的,但在生物体内,代谢过程是单向的。一些关键部位的代谢是由不同的酶催化正反应和逆反应的。这样可使两种反应都处于热力学的有利状态。一般a酮酸脱羧的反应、激酶催化的反应、羧化反应等都是不可逆的。这些反应常受到严密调控,成为关键步骤。
三、能量的代谢
(一)ATP是通用的能量载体
(二)NADPH以还原力的形式携带能量
(三)ATP、还原力和构造单元用于生物合成
第二节 酶活性的调节
一、前馈和反馈
(一)前馈即底物对反应速度的影响,有正负作用。一般起促进作用,有时为避免代谢途径过分拥挤,当底物过量时有负前馈。此时过量底物可转向其他途径。如高浓度的乙酰辅酶A是其羧化酶的变构抑制剂,可避免丙二酸单酰辅酶A合成过多。
(二)反馈一般起抑制作用,包括变构调节;也有反馈激活,如磷酸烯醇式丙酮酸羧化激酶的调节:其产物草酰乙酸是合成天冬氨酸和嘧啶核苷酸的前体,嘧啶核苷酸的反馈抑制使天冬氨酸积累,从而减少草酰乙酸的合成。而草酰乙酸对三羧酸循环是必须的,为维持三羧酸循环,产生了三种正调节:嘧啶核苷酸和乙酰辅酶A的反馈激活和二磷酸果糖的前馈激活。
二、能荷的调节
许多反应受能量状态的调节,能量状态可用能荷表示。正常细胞的能荷约为0.9,过高则抑制分解代谢和氧化磷酸化。所以ATP和ADP是糖酵解、三羧酸循环等途径的变构调节物。
三、酶的连续激活和共价修饰
(一)高等动物常用磷酸化和脱磷酸进行级联放大,而细菌常用腺苷酰化和脱腺苷作用进行修饰。这两种作用都由腺苷酰转移酶催化,其特异性由调节蛋白P控制,PA促进腺苷酰化,PD促进脱腺苷。调节蛋白P受尿苷酰化和脱尿苷的可逆修饰。大肠杆菌谷氨酰胺合成酶是此机制的代表。ATP和a酮戊二酸激活尿苷酰转移酶,谷氨酰胺则抑制。
(二)级联的意义:
1.放大信号
2.提供更多调控位点,可对多种因素作出反应
3.控制灵活,不同情况下反应不同。
第三节 细胞水平的调节
一、酶在细胞中的分布
(一)细胞核:核膜上有大量酶类,与糖、脂类、蛋白质代谢、核酸运输、复制、转录、加工和修饰有关。这些酶镶嵌在核膜上,或结合在膜表面,有利于各种反应的定向进行。
(二)胞液:指细胞质的连续液相部分。大部分中间代谢在此进行,如糖酵解、异生、磷酸戊糖途径、糖、脂类、氨基酸以及核苷酸的生物合成等。其重量的20%是蛋白质,所以是高度组织的胶状物质,而不是溶液。与糖原代谢有关的酶结合在糖原颗粒表面。
(三)内质网:粗糙型内质网与蛋白质的加工有关,光滑内质网与糖类和脂类的合成有关,细胞的磷脂、糖脂和胆固醇几乎都是内质网上的酶合成的。
(四)高尔基体:可对细胞合成或吸收的物质进行加工、浓缩、包装和运输,参与细胞的分泌和吸收过程。其膜的内表面有加工寡聚糖的酶类。
(五)溶酶体:含水解酶类,主要功能为消化、吸收、防御、吞噬和细胞自溶。
(六)线粒体:内膜形成嵴,其上有与呼吸链有关的细胞色素和氧化还原酶、ATP合成酶以及调节代谢物进出的运输蛋白。内膜中的基质含有三羧酸循环、b氧化、氨基酸分解等酶类。
二、膜结构对代谢的调控
(一)控制浓度梯度:膜的三种最基本功能:物质运输、能量转换和信息传递都与离子和电位梯度的产生和控制有关,如质子梯度可合成ATP,钠离子梯度可运输氨基酸和糖,钙可作为细胞内信使。
(二)控制细胞和细胞器的物质运输:通过底物和产物的运输可调节代谢,如葡萄糖进入肌肉和脂肪细胞的运输是其代谢的限速步骤,胰岛素可促进其主动运输,从而降低血糖。
(三)内膜系统对代谢的分隔:内膜形成分隔区,其中含有浓集的酶和辅因子,有利于反应。而且分隔可防止反应之间的互相干扰,有利于对不同区域代谢的调控。
(四)膜与酶的可逆结合:某些酶可与膜可逆结合而改变性质,称为双关酶。离子、代谢物、激素等都可改变其状态,发挥迅速、灵敏的调节作用。
三、蛋白质的定位控制
(一)信号肽:分泌蛋白、膜蛋白和溶酶体蛋白必须先进入内质网。分泌蛋白完全通过内质网膜,膜蛋白的羧基端则固定在膜中。
(二)导肽:线粒体、叶绿体等的蛋白是翻译后跨膜运输的,需要导肽。导肽通常位于氨基端,富含碱性氨基酸和羟基氨基酸,易形成两性a螺旋,可通过内外膜的接触点穿越膜。是需能过程,跨膜电位为运输提供能量,蛋白解折叠需ATP。不同的导肽含不同信息,可将蛋白送入线粒体的不同部位。
四、蛋白质寿命的控制
可随细胞内外环境而改变。有选择性降解系统,需要ATP提供能量,活化泛肽。泛肽分布广泛,结构保守,可标记需要降解的蛋白质,使水解酶能识别并攻击这种蛋白。
第四节 整体水平的调控
神经和激素都作用于细胞,通过调节酶的活性而发挥作用。
一、主要器官的代谢
(一)脑:以葡萄糖为燃料,没有燃料储备,每天消耗120克葡萄糖。只有在长期饥饿时用酮体。脂肪酸与蛋白结合,不能通过血脑屏障。
(二)肌肉:主要燃料是葡萄糖、脂肪酸和酮体。人体糖原的3/4位于肌肉中,不能向外运输。活动的肌肉中酵解远远超过三羧酸循环,产生大量乳酸,通过科里循环由肝脏异生为糖,返回肌肉。静止肌肉的主要燃料是脂肪酸。心肌则优先消耗乙酰乙酸。
(三)脂肪组织:脂解受环腺苷酸促进,产生的甘油运往肝脏。脂肪酸酯化需由葡萄糖提供磷酸二羟丙酮,缺乏葡萄糖时释放入血。
(四)肝脏:调节血液中代谢物的浓度,如糖和脂肪。燃料充足时,丙二酸单酰辅酶A抑制肉碱合成,脂肪酸不能进入线粒体氧化,而是合成脂肪,以极低密度脂蛋白的形式分泌入血。肝脏主要以氨基酸降解产生的酮酸为燃料,不能利用酮体。糖酵解主要用于生成生物合成的构造单元。
相关话题/生物化学
芸芸视频考研生物化学复习笔记
第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...专业课考研资料 本站小编 免费考研网 2019-03-27生物化学工程复习资料加强版,考研复习总结资料
生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...专业课考研资料 本站小编 免费考研网 2019-03-25强化农学生物化学辅导讲义
一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...专业课考研资料 本站小编 免费考研网 2019-03-25南开大学2019年微生物学、生物化学与分子生物学接受调剂生
一、接收专业与范围:接收调剂专业:微生物学;生物化学与分子生物学;接收调剂生第一志愿报考学院:生命科学学院(理学专业);接收调剂生需满足的分数线:政治>=50英语>=50专业课一>=80专业课二>=80总分>=310。二、调剂报名:申请调剂的考生请于3月19日下午到生命科学学院研究生办公室领取《调剂 ...考研调剂信息 本站小编 FreeKaoyan 2019-03-20生物化学(第三版)课后习题详细解答
生物化学(第三版)课后习题详细解答 第三章 氨基酸 提要 -氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L型的。但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质 ...专业课考研资料 本站小编 免费考研网 2019-03-17西安交通大学833生物化学基础考研真题_重点节选
一、西安交通大学833生物化学基础考研真题节选图片 题目一 题目二 二、西安交通大学833生物化学基础考研真题考察重点知识节选 单糖的结构 大多数单糖都是手性化合物。单搪构型是指分子中离M墓碳最远的那个手性碳原子的构型。 1.对映异构体:一个不对称碳原子的取代基在空间里的两种取向是物体与镜像的关系.不 ...专业课考研资料 本站小编 免费考研网 2019-03-16吉林大学338生物化学考研真题_重点节选
一、吉林大学338 生物化学考研真题节选图片 题目一 题目二 二、 吉林大学338 生物化学考研真题考察重点知识节选 光面内质网(SER):无核枯体颗粒附着的内质网,呈分枝小管状或泡状。其功能主要是合成磷脂和胆固醉。 此外在不同类型细胞中的光面内质网还担负其它复杂的功能(如在肝细胞中起解毒的作用,在肌细胞 ...专业课考研资料 本站小编 免费考研网 2019-03-16中国农业大学专业辅导班复习资料(生物化学)
中国农业大学专业辅导班复习资料(生物化学) 第一章,蛋白质 1.蛋白质的生物学功能是什么? 2.蛋白质的元素组成特点及其应用如何? 3.氨基酸的分类有哪几种方法?按侧链R基团分类的理由是什么? 4.蛋白质的分子组成有什么特点? 5.何为蛋白质氨基酸?何为非蛋白质氨基酸? 6.氨基酸有什么 ...专业课考研资料 本站小编 免费考研网 2019-03-13中国农业大学食品专业研究生考试生物化学总复习题
一,概念题(每题2分,共14分) 糖有氧氧化 脂肪酸-氧化 鸟氨酸循环 酮体 限制性内切酶 中心法则 联合脱氨基 氮的正平衡 糖异生 DNA的变性 共价调节 Tm值 核糖体 引发体 冈崎片断 二,填空题(每空1分,共50分) 1.糖酵解有 步脱氢反应和 步底物磷酸化反应。 2.18C的饱和脂肪酸 ...专业课考研资料 本站小编 免费考研网 2019-03-13中国农业大学食品学院研究生考试生物化学名词解释
生物化学名词解释 第一章 氨基酸和蛋白质 氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在-碳上。 必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 非必需氨基酸(nonessential amino acid):指 ...专业课考研资料 本站小编 免费考研网 2019-03-13中国农业大学生物学院生物化学总复习题
生物化学习题 名词解释 糖原;半纤维素;琼脂糖;糖蛋白;糖肽键;糖苷;氨基酸pI;桑格反应;艾德曼反应;HPLC;阳离子交换剂;分配系数;肽键;多肽链;艾德曼降解;-螺旋;-折叠片;-转角;二面角;Ramachandran 构象图;蛋白质一级结构;二级结构;超二级结构;三级结构;结构域;亚基;四级结 ...专业课考研资料 本站小编 免费考研网 2019-03-13中国农业大学生物化学考研复习习题含答案
中国农业大学生物化学习题集 第一章 蛋白质化学 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少? A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸是: A.精氨酸 B.赖氨酸 C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构 ...专业课考研资料 本站小编 免费考研网 2019-03-13中科院水生所2012生物化学硕士考试专业课试题
中国科学院研究生院水生生物研究所 2012年招收攻读硕士学位研究生入学考试试题 生物化学 一、名词解释(共30分,每小题3分) 1. 超分子复合物 (supermolecular complexe): 2. 多巴胺(dopamine): 3. 旋光活性(optical activity): 4. 两性离子(zwitterions): 5. 加压素(vasopressin): 6. 免疫印迹( ...专业课考研资料 本站小编 免费考研网 2019-03-13中山大学医学院生物化学本科考试试卷
以下内容为生化期末考试复习材料,根据95-08历年考试大题关键词涉及相关知识点频率排序。★数量仅代表出现次数,与重要性无关。 1. 胆汁酸、肝肠循环相关,胆红素代谢 ★★★★★★★★★ 胆汁酸(bile acids):存在于胆汁中一大类胆烷酸总称,以钠盐或钾盐的形式存在,即胆汁酸盐,简称胆盐。有游离型 ...专业课考研资料 本站小编 免费考研网 2019-03-12中山大学医学院生物化学复习重点知识点归纳总结
绪 论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些? 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及 ...专业课考研资料 本站小编 免费考研网 2019-03-12