生物化学考研笔记

本站小编 免费考研网/2019-04-03

绪  论
一、 生物化学的定义
生物化学就是生命的化学,是研究生物体的化学组成和生命过程中的化学变化的科学。前者包括生物体内的各种化学物质的结构和功能,后者指生物体内的新陈代谢及其调控。可以说,生物化学研究的是生命现象的化学本质,一切与生命有关的化学现象都是生物化学的研究对象。
二、 生物化学的发展历史
生物化学是随着人们对生命现象的研究逐渐发展的。十八世纪,化学家拉瓦锡通过对燃烧和呼吸的研究,发现了生物氧化作用,舍勒发现了柠檬酸、苹果酸等代谢中间物。这可以看作生物化学的萌芽。进入十九世纪后,自然科学,特别是物理学、化学和生物学的发展,促进了生物化学的发展。此时生物化学被称为生理化学,其研究中心在德国。李比希是生理化学的奠基人,并于1842年提出“新陈代谢”一词。1877年,德国医生霍佩-赛勒首次提出“生物化学”一词,并使之成为一门独立的科学。十九世纪的研究主要是对生物体内各种化学组分的分离提纯。得到了蛋白质、核酸等物质。
20世纪后,生物化学得到了突飞猛进的发展,其研究成果之多使人们应接不暇,以至把月刊和季刊改为周刊出版。这种局面的出现与实验技术的进步和相关学科的帮助是分不开的。层析、电泳和超速离心机的应用使分离提纯快速而精确;结构化学和X-射线晶体学在生物大分子的结构研究中发挥了巨大的作用;荧光分析和同位素示踪显示了代谢过程和酶促反应机制;电镜和计算机也极大地促进了生物化学的发展。1926年分离出脲酶结晶,1953年发现DNA双螺旋结构和测定胰岛素一级结构,是生物化学的重要发现。
三、 生物化学与其他科学
生物化学的研究成果表明不同的生命形式之间有着相同的化学本质。比如,所有的生命体内的蛋白质都是由完全相同的20种氨基酸构成的,而在核酸中编码每一个氨基酸的密码也是完全相同的。这就象全世界的人都使用同一种语言一样,表明它们来自共同的祖先。现在,所有的生命科学家已经达成共识,只有从分子水平上研究生命,把生命过程当做化学反应来研究,才能发现生命的本质规律。因此,生物化学的理论和方法,已经被所有生命科学采用;生物化学的知识,也成为生命科学的基础。同时,其它学科的发展也提供了生物化学研究的素材和知识,促进了生物化学的发展。
本世纪初,生命科学分科很细,个学科之间界限分明,都有各自的理论、方法和研究领域。而现在,大家有了共同语言,出现了许多交叉学科,如分子生理学、分子免疫学、分子药理学等等,都以分子为研究对象;一些老的学科,如动物、植物等,也都会用到生化知识。在医学上,生化可协助肿瘤、糖尿病等代谢疾病的诊断和治疗,大脑的功能和一些疾病的化学基础已有初步结果,脑细胞的再生也因一些生长因子的发现而成为可能,神经生物学的研究也到了分子水平。生物工程的成果将大大促进医药、食品、畜牧、农业等的发展。而其他学科的发展也必将促进生物化学的发展。
四、生物化学主要内容及我国近期发展重点:
1. 生物分子及其组合体的化学与三维结构的研究,以及结构与功能之间的关系。
(1) 生物活性多肽研究:含量极微,但对生物体内环境的恒定起关键性的调节作用,通过内分泌、旁分泌、神经内分泌、神经分泌等方式起作用。
l 神经肽与高级神经活动有密切关系。神经肽可以是信息传递者,也可以是神经调质。无论痛觉或愉快感、睡眠或兴奋、学习和记忆、进食和饮水,以至神经系统本身的分化及发育都受神经肽的影响。AVP4-8对中枢神经系统有上百倍的促进记忆功效。脑啡肽可以镇痛。
l 免疫多肽可以作为预防和治疗某些疾病的药物。在对艾滋病病毒作用机理研究的基础上合成了三种免疫多肽:1可溶性CD4结合区,以减少病毒向活细胞受体的攻击;2合成两个外壳蛋白的保守区,是一段两亲性螺旋,可以与CD4结合从而降低感染颗粒上反转录酶的活力;3合成外壳蛋白水解酶,抑制病毒活性蛋白的成熟过程。
l 细胞素可以调节细胞的生长或分化。内皮素是已知最强的缩血管物质,比血管紧张素的活性高10倍以上。
(2) 蛋白质三维结构与功能关系的研究:重点在于完整、精确、动态地测定蛋白质在溶液和晶体状态下的三维结构,并分析与其功能的关系。
(3) 蛋白质折叠的研究:主要包括体内新生肽链的折叠和体外变性蛋白的重折叠,以及以氨基酸序列知识为基础的蛋白质构象预测。
(4) 多肽工程和蛋白质工程:主要包括通过有控制的基因修饰和基因合成,对现有蛋白质和多肽加以定向改造,同时设计并最终生产比自然界已有的性能更加优良、更加符合人类需要的蛋白质和多肽。
(5) 核酸的结构与功能研究:包括tRNA结构与功能、核糖体的结构与功能、DNA的复制、RNA的翻译、酶活性RNA的结构与功能、snRNA的结构与功能研究。对反义核酸及酶活性RNA的应用研究亦必须给于足够的重视。
2. 蛋白质功能的研究,例如酶促作用,受体识别,分子间专一性结合的机理,信息通过受体本身或通过分子间的作用而传递的机理。80年代以来,酶学中具有突破性进展的是酶活性RNA和抗体酶的发现。酶结构与功能的研究中有效的方法是蛋白质工程和一些物理技术,如荧光淬灭、核磁共振等,已经可以描绘出酶蛋白的立体构象,并产生了进行分子解剖的分子拓扑学。固定化酶和生物传感器的研究已经产生了巨大的效益。酶学研究包括三个部分:基础酶学,包括酶的结构与功能、动力学、酶分子设计等;应用酶学,包括疾病的诊断、治疗、物质测定及酶在工农业等的应用;酶工程,包括固相载体、固定化技术、酶传感器等。
3. 基因信息的表达、传递、调控等的机理研究。
(1) 基因表达调控的分子机理。包括核酸-蛋白质的相互作用,转录、翻译和后加工过程中顺式元件和反式因子的作用等。
(2) 基因工程的研究。包括基础研究(如基因表达调控、工程化宿主、翻译后加工、肽链折叠等)和关键技术(如基因体外操作和基因转移技术、包涵体后处理、肽链再折叠、高密度培养技术等)研究。
4. 生物分子的合成和组装。包括膜脂与膜蛋白的相互作用,膜蛋白之间的相互作用,物质跨膜传送,跨膜信息传递和脂质体功能等研究。
5. 细胞分裂和繁殖的生化进程及控制机理。
6. 细胞及组织的生长、分化、衰老的分子基础。
五、 我国的生物化学
著名生物化学家吴宪(1893-1959),堪称中国生物化学的奠基者。他在血液分析、蛋白质变性、食物营养和免疫化学等四个领域都作出了重要贡献,并培养了许多生化学家。
1965年合成结晶牛胰岛素,1983年合成酵母丙氨酸tRNA,是中国生物化学研究的重要成就。
六、 学科特点和学习方法
生物化学分为动态(代谢)和静态(结构)两大部分,两部分之间是互相联系的。结构是代谢的基础,而在学习结构时,往往也涉及一些代谢的知识。学完代谢之后,如果再复习一下结构的知识,会有更深刻的理解。
生物化学是生物与化学的交叉学科,学习时会需要化学,特别是有机化学的知识。但生化与有机有许多不同,比如对手性化合物的命名,有机采用RS系统,生化则采用DL系统;又如生化中高能磷酸键的定义,也与有机不同。学习时要注意生化的特点。生化的这些特点,有其产生的历史原因,即这些概念提出较早,一直沿用下来;另一方面,这些做法在生化中确实比较方便,如DL系统,就是命名生物分子时提出的,对于生物分子的命名既准确,又方便。
生物化学以生物分子为研究对象,关于生物分子的共同特点,我们将在第一章中讲述。
生物化学有许多需要记忆的知识,也有许多需要理解的知识,既需要记忆,又不能完全死记硬背。书后习题不多,应该自己多找写题作,以加深对书本内容的理解。生物化学内容很多,不能全靠考试前突击,平时就应将常用的知识记牢。
七、 主要参考书:
1. 佐贝《生物化学》,复旦大学译。
2. Stryer《生物化学》,北大译。
3. 任邦哲《生物化学与临床医学》,湖南科技出版社。
4. 聂剑初《生物化学简明教程》,人民教育出版社。
5. 王延枝《生物化学学习指南 习题与解答》,武汉大学出版社。


生物化学主要内容
生物化学就是生命的化学,生物化学研究生物体的化学组成、化学结构及化学反应,是现代生物学各科的理论基础之一,生物化学技术和方法是现代生物学研究的基本手段,已渗透到生物学的各个领域,因此生物化学是专业基础课,主要讲授生物分子的基本组成、结构、主要理化性质、生理功能(上学期)以及其代谢和调控(下学期)。
上册
绪论(2学时)
第一章 生物分子概论(3学时)
第二章 糖:7学时
第三章 脂类:4学时
第三章 蛋白质:16学时
第五章 酶:12学时
第六章 核酸:4学时
第七章 维生素:4学时
第八章 抗生素:4学时
第九章 激素:6学时
下册
第一章 代谢总论:2学时
第二章 生物氧化:3学时
第三章 糖代谢:15学时(包括光合作用)
第四章 脂类代谢:8学时
第五章 蛋白质代谢:12学时
第六章 核酸代谢:4学时
第七章 DNA的生物合成:4学时
第八章 RNA的生物合成:4学时
第九章 蛋白质的生物合成:4学时
第十章 代谢调控:6学时

与其他学科的交叉部分:
1.核酸部分,信息代谢与分子及遗传有重复,生化中只讲主要过程,不讲各种蛋白因子的具体作用。C0t值与基因组关系密切,生化中不讲。
2.光合作用部分,与植物生理有交叉。生化主要讲暗反应,不仔细讲电子传递。
3.激素部分,与分子中信息传递有交叉。

先进性:
生化发展迅速,应及时补充新进展。主要来自期刊,如近期的诺贝尔奖等。也有一些新书或相近专业的书籍,如医学生化等。
实验:
1. DNS法测定还原糖:以前为费林试剂,现已基本不用。今年改为DNS,此法现在科研中常用,可练习分光光度计的使用及制作标准曲线。我在第一次进实验室领仪器时就将实验方法写出,让学生练习动手能力。
2. 皂化值的测定:应改
3. 氨基酸和蛋白质的颜色反应
4. 氨基酸的纸层析
5. 酪蛋白的提取
6. Folin-酚法测定蛋白浓度
7. 聚丙烯酰胺凝胶电泳
8. 酵母RNA的提取
9. 猪肝DNA的提取
10. 核酸浓度测定
11. 维生素的性质:应改
12. 酶的性质
13. 酶活力测定
14. 激素对血糖的影响



第一章    生物分子概论
第一节 概述
一、生物分子是生物特有的有机化合物
生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分子的小分子单元,称为构件。氨基酸、核苷酸和单糖分别是组成蛋白质、核酸和多糖的构件。
二、生物分子具有复杂有序的结构
生物分子都有自己特有的结构。生物大分子的分子量大,构件种类多,数量大,排列顺序千变万化,因而其结构十分复杂。估计仅蛋白质就有1010-1012种。生物分子又是有序的,每种生物分子都有自己的结构特点,所有的生物分子都以一定的有序性(组织性)存在于生命体系中。
三、生物结构具有特殊的层次
生物用少数几种生物元素(C、H、O、N、S、P)构成小分子构件,如氨基酸、核苷酸、单糖等;再用简单的构件构成复杂的生物大分子;由生物大分子构成超分子集合体;进而形成细胞器,细胞,组织,器官,系统和生物体。生物的不同结构层次有着质的区别:低层次结构简单,没有种属专一性,结合力强;高层次结构复杂,有种属专一性,结合力弱。生物大分子是生命的物质基础,生命是生物大分子的存在形式。生物大分子的特殊运动体现着生命现象。
四、生物分子都行使专一的功能
每种生物分子都具有专一的生物功能。核酸能储存和携带遗传信息,酶能催化化学反应,糖能提供能量。任何生物分子的存在,都有其特殊的生物学意义。人们研究某种生物分子,就是为了了解和利用它的功能。
五、代谢是生物分子存在的条件
代谢不仅产生了生物分子,而且使生物分子以一定的有序性处于稳定的状态中,并不断得到自我更新。一旦代谢停止,稳定的生物分子体系就要向无序发展,在变化中解体,进入非生命世界。
六、生物分子体系有自我复制的能力
遗传物质DNA能自我复制,其他生物分子在DNA的直接或间接指导下合成。生物分子的复制合成,是生物体繁殖的基础。
七、生物分子能够人工合成和改造
生物分子是通过漫长的进化产生的。随着生命科学的发展,人们已能在体外人工合成各类生物分子,以合成和改造生物大分子为目标的生物技术方兴未艾。

第二节 生物元素
在已知的百余种元素中,生命过程所必需的有27种,称为生物元素。生物体所采用的构成自身的元素,是经过长期的选择确定的。生物元素都是在自然界丰度较高,容易得到,又能满足生命过程需要的元素。
一、主要生物元素都是轻元素
主要生物元素C、H、O、N占生物元素总量的95%以上,其原子序数均在8以内。它们和S、P、K、Na、Ca、Mg、Cl共11种元素,构成生物体全部质量的99%以上,称为常量元素,原子序数均在20以内。另外16种元素称为微量元素,包括B,F,Si,Se,As,I,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Sn,Mo,原子序数在53以内。
二、碳氢氧氮硫磷是生物分子的基本素材
(一)碳氢是生物分子的主体元素
碳原子既难得到电子,又难失去电子,最适于形成共价键。碳原子非凡的成键能力和它的四面体构型,使它可以自相结合,形成结构各异的生物分子骨架。碳原子又可通过共价键与其它元素结合,形成化学性质活泼的官能团。
氢原子能以稳定的共价键于碳原子结合,构成生物分子的骨架。生物分子的某些氢原子被称为还原能力,它们被氧化时可放出能量。生物分子含氢量的多少(以H/C表示)与它们的供能价值直接相关。氢原子还参与许多官能团的构成。与电负性强的氧氮等原子结合的氢原子还参与氢键的构成。氢键是维持生物大分子的高级结构的重要作用力。
(二)氧氮硫磷构成官能团
它们是除碳以外仅有的能形成多价共价键的元素,可形成各种官能团和杂环结构,对决定生物分子的性质和功能具有重要意义。
此外,硫磷还与能量交换直接相关。生物体内重要的能量转换反应,常与硫磷的某些化学键的形成及断裂有关。一些高能分子中的磷酸苷键和硫酯键是高能键。
三、无机生物元素
(一)、利用过渡元素的配位能力
过渡元素具有空轨道,能与具有孤对电子的原子以配位键结合。不同过渡元素有不同的配位数,可形成各种配位结构,如三角形,四面体,六面体等。过渡元素的络和效应在形成并稳定生物分子的构象中,具有特别重要的意义。
过渡元素对电子的吸引作用,还可导致配体分子的共价键发生极化,这对酶的催化很有用。已发现三分之一以上的酶含有金属元素,其中仅含锌酶就有百余种。
铁和铜等多价金属离子还可作为氧化还原载体,担负传递电子的作用。在光系统II中,四个锰原子构成一个电荷累积器,可以累积失去四个电子,从而一次氧化两分子水,释放出一分子氧,避免有害中间产物的形成。细胞色素氧化酶中的铁-铜中心也有类似功能。
(二)、利用常量离子的电化学效应
K等常量离子,在生物体的体液中含量较高,具有电化学效应。它们在保持体液的渗透压,酸碱平衡,形成膜电位及稳定生物大分子的胶体状态等方面有重要意义。
各种生物元素对生命过程都有不可替代的作用,必需保持其代谢平衡。
氟是骨骼和牙釉的成分,以氟磷灰石的形式存在,可使骨晶体变大,坚硬并抗酸腐蚀。所以在饮食中添加氟可以预防龋齿。氟还可以治疗骨质疏松症。但当水中氟含量达到每升2毫克时,会引起斑齿,牙釉无光,粉白色,严重时可产生洞穴。氟是烯醇化酶的抑制剂,又是腺苷酸环化酶的激活剂。
硒缺乏是克山病的病因之一,而硒过多也可引起疾病,如亚硒酸盐可引起白内障。
糖耐受因子(GTF)可以促使胰岛素与受体结合,而铬可以使烟酸、甘氨酸、谷氨酸、半胱氨酸等与GTF络合。
某些非生物元素进入体内,能干扰生物元素的正常功能,从而表现出毒性作用。如镉能置换锌,使含锌酶失活,从而使人中毒。某些非生物元素对人体有益,如有机锗可激活小鼠腹腔巨嗜细胞,后者介导肿瘤细胞毒和抗原提呈作用,从而发挥免疫监视、防御和抗肿瘤作用。

第三节 生物分子中的作用力
一、两类不同水平的作用力
生物体系有两类不同的作用力,一类是生物元素借以结合称为生物分子的强作用力--共价键,另一类是决定生物分子高层次结构和生物分子之间借以相互识别,结合,作用的弱作用力--非共价相互作用。
二、共价键是生物分子的基本形成力
共价键(covalent bond)的属性由键能,键长,键角和极性等参数来描述,它们决定分子的基本结构和性质。
(一)键能
键能等于破坏某一共价键所需的能量。键能越大,键越稳定。生物分子中常见的共价键的键能一般在300--800kj/mol之间。
(二)键长
键长越长,键能越弱,容易受外界电场的影响发生极化,稳定性也越差。生物分子中键长多在0.1到0.18nm之间。
(三)键角
共价键具有方向性,一个原子和另外两个原子所形成的键之间的夹角即为键角。根据键长和键角,可了解分子中各个原子的排列情况和分子的极性。
(四)键的极性
共价键的极性是指两原子间电子云的不对称分布。极性大小取决于成键原子电负性的差。多原子分子的极性状态是各原子电负性的矢量和。在外界电场的影响下,共价键的极性会发生改变。这种由于外界电场作用引起共价键极性改变的现象称为键的极化。键的极性与极化,同化学键的反应性有密切关系。
(五)配位键对生物分子有特殊意义
配位键(coordinate bond)是特殊的共价键,它的共用电子对是由一个原子提供的。在生物分子中,常以过渡元素为电子受体,以化学基团中的O、N、S、P等为电子供体,形成多配位络和物。过渡元素都有固定的配位数和配位结构。
在生物体系中,形成的多配位体,对稳定生物大分子的构象,形成特定的生物分子复合物具有重要意义。由多配位体所产生的立体异构现象,甚至比手性碳所引起的立体异构现象更为复杂。金属元素的络和效应,因能导致配体生物分子内键发生极化,增强其反应性,而与酶的催化作用有关。
三、非共价相互作用
(一)、非共价作用力对生物体系意义重大
非共价相互作用是生物高层次结构的主要作用力。
非共价作用力包括氢键,静电作用力,范德华力和疏水作用力。这些力属于弱作用力,其强度比共价键低一两个数量级。这些力单独作用时,的确很弱,极不稳定,但在生物高层次结构中,许多弱作用力协同作用,往往起到决定生物大分子构象的作用。可以毫不夸张地说,没有对非共价相互作用的理解,就不可能对生命现象有深刻的认识。
各种非共价相互作用结合能的大小也有差别,在不同级别生物结构中的地位也有不同。结合能较大的氢键,在较低的结构级别(如蛋白质的二级结构),较小的尺度间,把氢受体基团与氢供体基团结合起来。结合能较小的范德华力则主要在更高的结构级别,较大的尺度间,把分子的局部结构或不同分子结合起来。
(二)、氢键
氢键(hydrogen bond)是一种弱作用力,键能只相当于共价键的1/30-1/20(12-30 kj/mol),容易被破坏,并具有一定的柔性,容易弯曲。氢原子与两侧的电负性强的原子呈直线排列时,键能最大,当键角发生20度偏转时,键能降低20%。氢键的键长比共价键长,比范德华距离短,约为0.26-0.31nm。
氢键对生物体系有重大意义,特别是在稳定生物大分子的二级结构中起主导作用。
(三)、范德华力
范德华力是普遍存在于原子和分子间的弱作用力,是范德华引力与范德华斥力的统一。引力和斥力分别和原子间距离的6次方和12次方成反比。二者达到平衡时,两原子或原子团间保持一定的距离,即范德华距离,它等于两原子范德华半径的和。每个原子或基团都有各自的范德华半径。
范德华力的本质是偶极子之间的作用力,包括定向力、诱导力和色散力。极性基团或分子是永久偶极,它们之间的作用力称为定向力。非极性基团或分子在永久偶极子的诱导下可以形成诱导偶极子,这两种偶极子之间的作用力称为诱导力。非极性基团或分子,由于电子相对于原子核的波动,而形成的瞬间偶极子之间的作用力称为色散力。
范德华力比氢键弱得多。两个原子相距范德华距离时的结合能约为4kj/mol,仅略高于室温时平均热运动能(2.5kj/mol)。如果两个分子表面几何形态互补,由于许多原子协同作用,范德华力就能成为分子间有效引力。范德华力对生物多层次结构的形成和分子的相互识别与结合有重要意义。
(四)、荷电基团相互作用
荷电基团相互作用,包括正负荷电基团间的引力,常称为盐键(salt bond)和同性荷电基团间的斥力。力的大小与荷电量成正比,与荷电基团间的距离平方成反比,还与介质的极性有关。介质的极性对荷电基团相互作用有屏蔽效应,介质的极性越小,荷电基团相互作用越强。例如,-COO-与-NH3+间在极性介质水中的相互作用力,仅为在蛋白质分子内部非极性环境中的1/20,在真空中的1/80。
(五)、疏水相互作用
疏水相互作用(hydrophobic interaction)比范德华力强得多。例如,一个苯丙氨酸侧链由水相转入疏水相时,体系的能量降低约40kj/mol。
生物分子有许多结构部分具有疏水性质,如蛋白质的疏水氨基酸侧链,核酸的碱基,脂肪酸的烃链等。它们之间的疏水相互作用,在稳定蛋白质,核酸的高层次结构和形成生物膜中发挥着主导作用。

第四节 生物分子低层次结构的同一性
一、碳架是生物分子结构的基础
碳架是生物分子的基本骨架,由碳,氢构成。生物分子碳架的大小组成不一,几何形状结构各异,具有丰富的多样性。生物小分子的分子量一般在500以下,包括2-30个碳原子。碳架结构有线形的,有分支形的,也有环形的;有饱和的,也有不饱和的。变化多端的碳架与种类有限的官能团,共同组成形形色色的生物分子的低层次结构--生物小分子。
二、官能团限定分子的性质
(一)官能团是易反应基团
官能团是生物分子中化学性质比较活泼,容易发生化学反应的原子或基团。含有相同官能团的分子,具有类似的性质。官能团限定生物分子的主要性质。然而,在整个分子中,某一官能团的性质总要受到分子其它部分电荷效应和立体效应的影响。任何一种分子的具体性质,都是其整体结构的反应。
(二)主要的官能团
生物分子中的主要官能团和有关的化学键有:
羟基(hydroxyl group) 有极性,一般不解离,能与酸生成酯,可作为氢键供体。
羰基(carbonyl group) 有极性,可作为氢键受体。
羧基(carboxyl group) 有极性,能解离,一般显弱酸性。
氨基(amino group) 有极性,可结合质子生成铵阳离子。
酰胺基(amido group) 由羧基与氨基缩合而成,有极性,其中的氧和氮都可作为氢键供体。肽链中联接氨基酸的酰胺键称为肽键。
巯基(sulfhydryl group) 有极性,在中性条件下不解离。易氧化成二硫键-S-S。
胍基(guanidino group) 强碱性基团,可结合质子。胍基磷酸键是高能键。
双键(double bond) 由一个σ键和一个π键构成,其中π键键能小,电子流动性很大,易发生极化断裂而产生反应。双键不能旋转,有顺反异构现象。规定用"顺"(cis)表示两个相同或相近的原子或基团在双键同侧的异构体,用"反"(trans)表示相同原子位于双键两侧的异构体。
焦磷酸键(pyrophosphate bond) 由磷酸缩合而成,是高能键。一摩尔ATP水解成ADP可放出7.3千卡能量,而葡萄糖-6-磷酸只有3.3千卡。
氧酯键(ester bond)和硫酯键(thioester bond) 分别由羧基与羟基和巯基缩水而成。硫酯键是高能键。
磷酸酯键(phosphoester bond) 由磷酸与羟基缩水而成。磷酸与两个羟基结合时,称为磷酸二酯键。这两种键中的磷酸羟基可解离成阴离子。
生物小分子大多是双官能团或多官能团分子,如糖是多羟基醛(酮),氨基酸是含有氨基的羧酸。官能团在碳链中的位置和在碳原子四周的空间排布的不同,进一步丰富了生物分子的异构现象。
三、杂环集碳架和官能团于一体
(一)大部分生物分子含有杂环


相关话题/生物化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 生物化学考研笔记关于生物化学的复习的常见习题和解析
    生化笔记 1.1.1蛋白质的结构与功能 考点: 组成蛋白质的20种氨基酸的类别、分类依据及几种特殊氨基酸的分类; 氨基酸的理化性质、成肽反应及体内重要的生物活性肽; 蛋白质的分类及分子结构; 蛋白质的结构(包括一级结构与空间结构)与功能的关系; 蛋白质的理化性质、分离纯化的基本方法及其原理; 蛋白质一级结构的 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学考研笔记 王镜岩课堂全精要
    第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学考试习题分析及自测题
    二.习题分析及自测题 一、在做某一多肽样品的一级结构分析时,样品与DNFB反应,再经酸水解得到DNP-Asn;将样品进行氨基酸组成分析,得到如下结果: A -5F -1K-2P-3T -1C -2G -3L -2Q-1V-1D-3H -2M -2R-1W-2E-0I-3N-2S-2Y-0 根据以上信息你能得出哪些结论?(1996年,北医) 考点:多肽链中氨基酸序列分析即蛋白质一级结 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学(第三版)课后习题解答
    第一章 糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分 ...
    本站小编 免费考研网 2019-04-02
  • 沈阳药科大学生物化学笔记
    概念第三章1、等电点: 使氨基酸所带正,负电荷相同,静电荷为零时溶液的pH值2、蛋白质的一级结构:是由不同的氨基酸种类、数量和排列顺序,通过肽键而构成的高分有机含氮化合物。3、肽键 : 是蛋白质分子中基本的化学键,它是由是由一分子氨基酸的羧基和另一分子氨基酸的氨基脱水缩合而成的,也称酰胺键。4、肽:氨基酸通过肽 ...
    本站小编 免费考研网 2019-04-02
  • 上海交通大学生物化学笔记
    D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记-2.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记3.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记4.doc D: ...
    本站小编 免费考研网 2019-04-02
  • 江南大学生物化学考研笔记沈同第2版及第3版
    生化笔记--沈同(适用第2版及第3版)第一章 概论第一章 概 论 一、 生物化学的概念及其研究内容 生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢和自我繁殖)。那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过蛋白质是生命活动的体现者。 ...
    本站小编 免费考研网 2019-04-01
  • 西综历年真题及答案解析(彩色版)生物化学
    本历年真题为知识宝库NBF 西医综合历年真题系列:方便搜索版之 生物化学(彩色版),去年共推出了NBF 西综真题四个部分,今年我在 闲暇时,为了广大西综学习者整理了方便搜索使用版,考虑到真题多, 网络学习时翻来翻去寻找相同或不同的试题不是太方便,所以制定了此 系列,细化了目录,在目录中建立了超级连接,方便 ...
    本站小编 免费考研网 2019-03-31
  • 微生物学经典题库考研加生物化学笔记
    微生物学试题库 微生物学试题(一) 一、写出下列名词解释的中文翻译及作出解释 1.Gram positive bacteria 2.parasporal crystal 3 ,colony 4, life cycle 5,capsule6,endospore 二、简答题 1,试述微生物与当代人类实践的重要关系? 2,简述革兰氏染色的机制? 3.微生物有哪五大共性?其中最基本的是哪一个?为什么 ...
    本站小编 免费考研网 2019-03-29
  • 王镜岩生物化学第三版考研笔记_合版
    王镜岩生物化学考研第三版笔记 第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达101 ...
    本站小编 免费考研网 2019-03-29
  • 王镜岩2011考研生物化学(内部资料)
    第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...
    本站小编 免费考研网 2019-03-29
  • 生物化学笔记 针对王镜岩等《生物化学》第三版
    生物化学笔记针对王镜岩等《生物化学》第三版 适合以王镜岩《生物化学》第三版为考研指导 教材的各高校的生物类考生备考 目 录 第 一 章 概 述------------------------------01 第 二 章 糖 类------------------------------06 第 三 章 脂 类--- ...
    本站小编 免费考研网 2019-03-28
  • 芸芸视频考研生物化学复习笔记
    第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...
    本站小编 免费考研网 2019-03-27
  • 生物化学工程复习资料加强版,考研复习总结资料
    生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...
    本站小编 免费考研网 2019-03-25
  • 强化农学生物化学辅导讲义
    一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...
    本站小编 免费考研网 2019-03-25