王镜岩2011考研生物化学(内部资料)(13)

本站小编 免费考研网/2019-03-29


无活性的G蛋白(G β γ α —GDP)发生GTP—GDP交换,形成有活性的G蛋白(Gs),其催化亚基Gα—GTP解离出来,扩散到细胞内,激活其效应子(腺苷酸环化酶、PLC、K+通道等)
每一个激素—受体复合物可以形成许多个分子Gα—GTP,由此给出“放大”的效应。
当激素停止分泌时,结合在受体上的激素就逐渐解离下来。Gα—GTP缓慢水解,释放掉GTP,Gα失去催化活性,与β γ 亚基重新形成无活性的G蛋白(G β γ α —GDP)。信号转导停止。
结合态GTP水解,表明G蛋白是一个GTPase,即这个调节蛋白具有一种内藏式的脱活作用,缺乏激素时,GTP 、 GDP交换反应速度降低,最终几乎所有的G 蛋白均以结合着GDP的无活性形式存在。β-肾上腺素受体的构象——跨膜七螺旋区
P 430 β-肾上腺素受体结构
许多与G蛋白偶连的受体都是跨膜蛋白,跨膜螺旋区结构是激活G蛋白的跨膜受体所具有的普遍特征。
4、 蛋白激酶A
凡有cAMP的细胞,都有一类蛋白激酶(PKA),cAMP通过蛋白激酶A发挥它的作用。
蛋白激酶A的活化    P430  图8-6  cAMP激活蛋白激酶A
5、 肾上腺素的作用方式(在促进糖元分解中的级联放大作用)
P 431 图8-7   肾上腺素对提高血糖的级联放大作用。
当肾上腺素以10-8—10-10mol/L的浓度到达肝细胞表面时,迅速与肝细胞表面的肾上腺素受体结合,使此局部构象变化,激活与受体偶连的G蛋白,从而激活膜上的腺苷酸环化酶,产生cAMP。
少量的肾上腺素(10-8-10-10mol/L),能引起强烈反应,产生5mmol/L葡萄糖。反应过程中信号逐级放大,共约300万倍,它在几秒钟内就可使磷酸化酶的活性达到最大。
一旦肾上腺素停止分泌,结合在肝细胞膜上的肾上腺素就解离下来,产生一系列变化:
cAMP不再生成,遗留的cAMP被磷酸二酯酶分解。蛋白激酶A的两种亚基又联结成无活性的复合体(催化亚基和调节亚基),有活性的磷酸化酶激酶的磷酸化形式遭到脱磷酸作用,变成无活性形式,磷酸化酶a受到磷酸酶作用,脱去磷酸变成无活性的磷酸化酶b,糖元分解停止。同时无活性的磷酸化形式的糖元合成酶经过脱磷酸作用,又变得活跃起来,继续合成糖元。
二、 甲状腺素
1、 结构
含碘落氨酸衍生物。
在甲状腺中合成甲状腺球蛋白,每分子此球蛋白含2-4个T4分子。
当受促甲状腺激素刺激时,溶酶体中的蛋白酶水解甲状腺球蛋白,放出T4和T3。血浆中T3和T4绝大部分与血浆中的蛋白质结合运输,可防止T3、T4经肾丢失。
T3、T4在肝中失活,肝中有一种与甲状腺素亲合力极强的蛋白质,血流经过肝脏时,1/3的甲状腺素被肝细胞摄取,与葡萄糖醛酸或硫酸反应后失活,由胆汁排出。
还可脱氨、脱羧、脱碘而失活。
2、 功能
增强新陈代谢,引起耗氧量及产热量增加,促进智力与体质发育。
缺乏症:幼年  发育迟缓,行动呆笨等
       成年  厚皮病、基础代谢降低
过量:甲亢、基础代谢增高、眼球突出、心跳加快、消瘦、
神经系统兴奋提高,表现为神经过敏。
3、 作用方式
在线粒体中促进ATP氧化磷酸化过程,增加基础代谢。
增加RNA(tRNA、mRNA)的合成,促进个体生长发育。
三、 胰岛素及胰高血糖素
1、 结构 
P128图3-38
①β-细胞  胰岛素  A链21 a.a残基  B链30 a.a残基
②α-细胞  胰高血糖素  29 a.a残基
2、 功能
①胰岛素:提高组织摄取葡萄糖的能力,抑制肝糖元分解,促进肝糖元及肌糖元合成,因此可降低血糖。
缺乏:血糖升高,尿中有糖,糖尿病。
过量:血糖过低,能量供应不足,影响大脑机能。
②胰高血糖素:增高血糖含量,促进肝糖元分解。
3、 作用方式:
(1)、 胰岛素:受体—酪氨酸蛋白激酶途径
P442  图8-14       P443  图8-15
胰岛素的受体是跨膜的酪氨酸激酶,由α 2β 2组成,α 链处在细胞膜的外侧,β 链穿过细胞膜。
胰岛素结合到受体的膜外部分上时是如何诱导处受体的膜内部分的酪氨酸激酶的活性的?活化的受体对靶细胞中的哪些蛋白质进行磷酸化?磷酸化的靶蛋白如何地具有多重的促进生长效应和多冲的代谢效应?都不清楚
(2)、 胰高血糖素:cAMP途径
与肾上腺素类似,通过cAMP途径,提高肝糖元磷酸化酶活性,促进肝糖原分解(并不促使肌糖原分解)。
第八章   糖代谢
                               自养生物
                   分解代谢
    糖代谢包括                 异养生物
                               自养生物
                   合成代谢
                               异养生物
                               能量转换(能源)
糖代谢的生物学功能
                               物质转换(碳源)
可转化成多种中间产物,这些中间产物可进一步转化成氨基酸、脂肪酸、核苷酸。
糖的磷酸衍生物可以构成多种重要的生物活性物质:NAD、FAD、DNA、RNA、ATP。
分解代谢:酵解(共同途径)、三羧酸循环(最后氧化途径)、磷酸戊糖途径、糖醛酸途径等。
合成代谢:糖异生、糖原合成、结构多糖合成以及光合作用。
分解代谢和合成代谢,受神经、激素、别构物调节控制。
第一节   糖酵解  glycolysis
一、 酵解与发酵
1、 酵解 glycolysis  (在细胞质中进行)
酵解酶系统将Glc降解成丙酮酸,并生成ATP的过程。它是动物、植物、微生物细胞中Glc分解产生能量的共同代谢途径。
在好氧有机体中,丙酮酸进入线粒体,经三羧酸循环被彻底氧化成CO2和H2O,产生的NADH经呼吸链氧化而产生ATP和水,所以酵解是三羧酸循环和氧化磷酸化的前奏。
若供氧不足,NADH把丙酮酸还原成乳酸(乳酸发酵)。
2、 发酵fermentation
厌氧有机体(酵母和其它微生物)把酵解产生的NADH上的氢,传递给丙酮酸,生成乳酸,则称乳酸发酵。
若NAPH中的氢传递给丙酮酸脱羧生成的乙醛,生成乙醇,此过程是酒精发酵。
有些动物细胞即使在有O2时,也会产生乳酸,如成熟的红细胞(不含线粒体)、视网膜。
 
二、 糖酵解过程(EMP)
Embden-Meyerhof Pathway ,1940
在细胞质中进行
1、 反应步骤
P79  图 13-1 酵解途径,三个不可逆步骤是调节位点。
(1)、 葡萄糖磷酸化形成G-6-P
反应式
此反应基本不可逆,调节位点。△G0= - 4.0Kcal/mol使Glc活化,并以G-6-P形式将Glc限制在细胞内。
催化此反应的激酶有,已糖激酶和葡萄糖激酶。
激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子,底物诱导的裂缝关闭现象似乎是激酶的共同特征。
P 80 图13-2己糖激酶与底物结合时的构象变化
已糖激酶:专一性不强,可催化Glc、Fru、Man(甘露糖)磷酸化。己糖激酶是酵解途径中第一个调节酶,被产物G-6-P强烈地别构抑制。
葡萄糖激酶:对Glc有专一活性,存在于肝脏中,不被G-6-P抑制。Glc激酶是一个诱导酶,由胰岛素促使合成,
肌肉细胞中已糖激酶对Glc的Km为0.1mmol/L,而肝中Glc激酶对Glc的Km为10mmol/L,因此,平时细胞内Glc浓度为5mmol/L时,已糖激酶催化的酶促反应已经达最大速度,而肝中Glc激酶并不活跃。进食后,肝中Glc浓度增高,此时Glc激酶将Glc转化成G-6-P,进一步转化成糖元,贮存于肝细胞中。
(2)、 G-6-P异构化为F-6-P
 反应式:
由于此反应的标准自由能变化很小,反应可逆,反应方向由底物与产物的含量水平控制。
此反应由磷酸Glc异构酶催化,将葡萄糖的羰基C由C1移至C2 ,为C1位磷酸化作准备,同时保证C2上有羰基存在,这对分子的β断裂,形成三碳物是必需的。
(3)、 F-6-P磷酸化,生成F-1.6-P
反应式:
此反应在体内不可逆,调节位点,由磷酸果糖激酶催化。
磷酸果糖激酶既是酵解途径的限速酶,又是酵解途径的第二个调节酶
(4)、 F-1.6-P裂解成3-磷酸甘油醛和磷酸二羟丙酮(DHAP)
反应式:
该反应在热力学上不利,但是,由于具有非常大的△G0负值的F-1.6-2P的形成及后续甘油醛-3-磷酸氧化的放能性质,促使反应正向进行。同时在生理环境中,3-磷酸甘油醛不断转化成丙酮酸,驱动反应向右进行。
该反应由醛缩酶催化,反应机理
     P 83
(5)、 磷酸二羟丙酮(DHAP)异构化成3-磷酸甘油醛
反应式:(注意碳原子编号的变化)
由磷酸丙糖异构酶催化。
已糖转化成3-磷酸甘油醛后,C原子编号变化:F-1.6-P的C1-P、C6-P都变成了3-磷酸甘油醛的C3-P
图解:
(6)、 3-磷酸甘油醛氧化成1.3—二磷酸甘油酸
反应式:
由磷酸甘油醛脱氢酶催化。
此反应既是氧化反应,又是磷酸化反应,氧化反应的能量驱动磷酸化反应的进行。
反应机理:
   P84    图 13-4  3-磷酸甘油醛脱氢酶的催化机理
碘乙酸可与酶的-SH结合,抑制此酶活性,砷酸能与磷酸底物竞争,使氧化作用与磷酸化作用解偶连(生成3-磷酸甘油酸)
(7)、 1.3—二磷酸甘油酸转化成3—磷酸甘油酸和ATP
反应式:
由磷酸甘油酸激酶催化。
这是酵解过程中的第一次底物水平磷酸化反应,也是酵解过程中第一次产生ATP的反应。
一分子Glc产生二分子三碳糖,共产生2ATP。这样可抵消Glc在两次磷酸化时消耗的2ATP。
(8)、 3—磷酸甘油酸转化成2—磷酸甘油酸
反应式:
磷酸甘油酸变位酶催化,磷酰基从C3移至C2。
(9)、 2—磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
反应式:
烯醇化酶
2—磷酸甘油酸中磷脂键是一个低能键(△G= -17.6Kj /mol)而磷酸烯醇式丙酮酸中的磷酰烯醇键是高能键(△G= -62.1Kj /mol),因此,这一步反应显著提高了磷酰基的转移势能。
(10)、 磷酸烯醇式丙酮酸生成ATP和丙酮酸。
反应式:
不可逆,调节位点。
由丙酮酸激酶催化,丙酮酸激酶是酵解途径的第三个调节酶,
这是酵解途径中的第二次底物水平磷酸化反应,磷酸烯醇式丙酮酸将磷酰基转移给ADP,生成ATP和丙酮酸
EMP总反应式:
1葡萄糖+2Pi+2ADP+2NAD+  →  2丙酮酸+2ATP+2NADH+2H++2H2O
2、 糖酵解的能量变化
 P87  图  13-5  糖酵解途径中ATP的生成
无氧情况下:净产生2ATP(2分子NADH将2分子丙酮酸还原成乳酸)。
有氧条件下:NADH可通过呼吸链间接地被氧化,生成更多的ATP。
       1分子NADH→3ATP
       1分子FAD  →2ATP
因此,净产生8ATP(酵解2ATP,2分子NADH进入呼吸氧化,共生成6ATP)。
但在肌肉系统组织和神经系统组织:一个Glc酵解,净产生6ATP(2+2*2)。
★甘油磷酸穿梭:
2分子NADH进入线粒体,经甘油磷酸穿梭系统,胞质中磷酸二羟丙酮被还原成3—磷酸甘油,进入线粒体重新氧化成磷酸二羟丙酮,但在线粒体中的3—磷酸甘油脱氢酶的辅基是FAD,因此只产生4分子ATP。
①:胞液中磷酸甘油脱氢酶。
②:线粒体磷酸甘油脱氢酶。
       《罗纪盛》P 259    P 260。
★苹果酸穿梭机制:
胞液中的NADH可经苹果酸脱氢酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸—2—酮戊二酸载休转运,进入线粒体内,由线粒体内的苹果酸脱氢酶催化,生成NADH和草酰乙酸。
而草酰乙酸经天冬氨酸转氨酶作用,消耗Glu而形成Asp。Asp经线粒体上的载体转运回胞液。在胞液中,Asp经胞液中的Asp转氨酶作用,再产生草酰乙酸。
经苹果酸穿梭,胞液中NADH进入呼吸链氧化,产生3个ATP。
    图
苹果酸脱氢酶(胞液)
α—酮戊二酸转位酶
苹果酸脱氢酶(线粒体基质)
谷—草转氨酶
Glu—Asp转位酶
谷—草转氨酶
草酰乙酸:
苹果酸:
α—酮戊二酸:
3、 糖酵解中酶的反应类型
P88 表13-1  糖酵解反应
氧化还原酶(1种):3—磷酸甘油醛脱氢酶
转移酶(4种):己糖激酶、磷酸果糖激酶、磷酸甘油酸激酶、丙酮酸激酶
裂合酶(1种):醛缩酶
异构酶(4种):磷酸Glc异构酶、磷酸丙糖异构酶、磷酸甘油酸变位酶、烯醇化酶
三、 糖酵解的调节
参阅 P120 糖酵解的调节
糖酵解过程有三步不可逆反应,分别由三个调节酶(别构酶)催化,调节主要就发生在三个部位。
1、 已糖激酶调节
别构抑制剂(负效应调节物):G—6—P和ATP
别构激活剂(正效应调节物):ADP
2、 磷酸果糖激酶调节(关键限速步骤)
抑制剂:ATP、柠檬酸、脂肪酸和H+
激活剂:AMP、F—2.6—2P
ATP:细胞内含有丰富的ATP时,此酶几乎无活性。
柠檬酸:高含量的柠檬酸是碳骨架过剩的信号。
H+:可防止肌肉中形成过量乳酸而使血液酸中毒。
3、 丙酮酸激酶调节
抑制剂:乙酰CoA、长链脂肪酸、Ala、ATP
激活剂:F-1.6-P、
四、 丙酮酸的去路
1、 进入三羧酸循环
2、 乳酸的生成
在厌氧酵解时(乳酸菌、剧烈运动的肌肉),丙酮酸接受了3—磷酸甘油醛脱氢酶生成的NADH上的氢,在乳酸脱氢酶催化下,生成乳酸。
总反应:    Glc + 2ADP + 2Pi → 2乳酸 + 2ATP + 2H2O
动物体内的乳酸循环 Cori 循环:
     图
肌肉收缩,糖酵解产生乳酸。乳酸透过细胞膜进入血液,在肝脏中异生为Glc,解除乳酸积累引起的中毒。
Cori循环是一个耗能过程:2分子乳酸生成1分子Glc,消耗6个ATP。
3、 乙醇的生成
酵母或其它微生物中,经糖酵解产生的丙酮酸,可以经丙酮酸脱羧酶催化,脱羧生成乙醛,在醇脱氢酶催化下,乙醛被NADH还原成乙醇。
总反应:Glc+2pi+2ADP+2H+→2乙醇+2CO2+2ATP+2H20
在厌氧条件下能产生乙醇的微生物,如果有氧存在时,则会通过乙醛的氧化生成乙酸,制醋。
4、 丙酮酸进行糖异生
五、 其它单糖进入糖酵解途径
除葡萄糖外,其它单糖也可进行酵解
P 91  图 13-6  各种单糖进入糖酵解的途径
1.糖原降解产物G—1—P
2.D—果糖    有两个途径
3.D—半乳糖
4.D—甘露糖
第二节   三羧酸循环
葡萄糖的有氧氧化包括四个阶段。
①糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH)
②丙酮酸氧化脱羧生成乙酰CoA
③三羧酸循环(CO2、H2O、ATP、NADH)
④呼吸链氧化磷酸化(NADH-----ATP)
三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。
原核生物:①~④阶段在胞质中
真核生物:①在胞质中,②~④在线粒体中
一、 丙酮酸脱羧生成乙酰CoA
1、 反应式:

此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。
2、 丙酮酸脱氢酶系
丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。
E.coli丙酮酸脱氢酶复合体:
分子量:4.5×106,直径45nm,比核糖体稍大。
    酶                      辅酶           每个复合物亚基数
丙酮酸脱羧酶(E1)           TPP            24
二氢硫辛酸转乙酰酶(E2)     硫辛酸          24
二氢硫辛酸脱氢酶(E3)       FAD、NAD+     12
此外,还需要CoA、Mg2+作为辅因子
这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。
3、 反应步骤
P 93   反应过程
(1)丙酮酸脱羧形成羟乙基-TPP
(2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基
(3)E2将乙酰基转给CoA,生成乙酰-CoA
(4)E3氧化E2上的还原型二氢硫辛酸
(5)E3还原NAD+生成NADH
4、 丙酮酸脱氢酶系的活性调节
从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。
(1)可逆磷酸化的共价调节
丙酮酸脱氢酶激酶(EA)(可被ATP激活)
丙酮酸脱氢酶磷酸酶(EB)
磷酸化的丙酮酸脱氢酶(无活性)
去磷酸化的丙酮酸脱氢酶(有活性)
(2)别构调节
ATP、CoA、NADH是别构抑制剂
ATP抑制E1
CoA抑制E2
NADH抑制E3
5、 能量
1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。
二、 三羧酸循环(TCA)的过程
TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。
1、 反应步骤
P95   图13-9  概述三羧酸循环
(1)、 乙酰CoA+草酰乙酸→柠檬酸
反应式:
柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。
柠檬酸合酶上的两个His残基起重要作用:
一个与草酰乙酸羰基氧原子作用,使其易受攻击;另一个促进乙酰CoA的甲基碳上的质子离开,形成烯醇离子,就可与草酰乙酸缩合成C-C键,生成柠檬酰CoA,后者使酶构象变化,使活性中心增加一个Asp残基,捕获水分子,以水解硫酯键,然后CoA和柠檬酸相继离开酶。
氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。
      图
氟乙酸本身无毒,氟柠檬酸是乌头酸酶专一的抑制剂,氟柠檬酸结合到乌头酸酶的活性部位上,并封闭之,使需氧能量代谢受毒害。它存在于某些有毒植物叶子中,是已知最能致死的简单分子之一。LD50 为0.2mg/Kg体重,它比强烈的神经毒物二异丙基氟磷酸的LD50小一个数量级。
2)、 柠檬酸→异柠檬酸
反应式:
这是一个不对称反应,由顺鸟头酸酶催化
P 101 图13—12  顺乌头酸酶与柠檬酸的不对称结合
顺乌头酸酶只能以两种旋光异构方式中的一种与柠檬酸结合,结果,它催化的第一步脱水反应中的氢全来自草酰乙酸部分,第二步的水合反应中的OH也只加在草酰乙酸部分。这种酶与底物以特殊方式结合(只选择两种顺反异构或旋光异构中的一种结合方式)进行的反应称为不对称反应。结果,TCA第一轮循环释放的CO2全来自草酰乙酸部分,乙酰CoA羰基碳在第二轮循环中释放,甲基碳在第三轮循环中释放50%,以后每循环一轮释放余下的50%。
柠檬酸上的羟基是个叔醇,无法进一步被氧化。因此,柠檬酸需转变成异柠檬酸,将不能被氧化的叔醇,转化成可以被氧化的仲醇。
90%柠檬酸、4%顺乌头酸、6%异柠檬酸组成平衡混合物,但柠檬酸的形成及异柠檬酸的氧化都是放能反应,促使反应正向进行。
(3)、 异柠檬酸氧化脱羧生成α-酮戊二酸和NADH
反应式:
这是三羧酸循环中第一次氧化脱羧反应,异柠檬酸脱氢酶,TCA中第二个调节酶:
Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。
细胞在高能状态:ATP/ADP、NADH/NAD+比值高时,酶活性被抑制。
线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。
(4)、 α-酮戊二酸氧化脱羧生成琥珀酰CoA和NADH
反应式:
α-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制
α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢)
(5)、 琥珀酰CoA生成琥珀酸和GTP
反应式:
琥珀酰CoA合成酶(琥珀酸硫激酶)
这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。
在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。
在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。
(6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH
反应式:
琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。
丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。
(7)、 延胡索酸水化生成L-苹果酸
反应式:
延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。
(8)、 L-苹果酸脱氢生成草酰乙酸和NADH
反应式:
L-苹果酸脱氢酶
平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6mol/L,使反应向右进行。
2、 TCA循环小结
(1)、 三羧酸循环示意图(标出C编号的变化)
P95  图13-9
(2)、 总反应式:
丙酮酸 + 4NAD+ + FAD + GDP  →  4NADH + FADH2 + GTP + 3CO2 + H2O
乙酰CoA + 3NAD+ + FAD + GDP  →  3NADH + FADH2 + GTP + 2CO2 + H2O
(3)、 一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。
3NADH、FADH2进入呼吸链
(4)、 三羧酸循环中碳骨架的不对称反应
同位素标记表明,乙酰CoA上的两个C原子在第一轮TCA上并没有被氧化。

相关话题/生物化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 生物化学笔记 针对王镜岩等《生物化学》第三版
    生物化学笔记针对王镜岩等《生物化学》第三版 适合以王镜岩《生物化学》第三版为考研指导 教材的各高校的生物类考生备考 目 录 第 一 章 概 述------------------------------01 第 二 章 糖 类------------------------------06 第 三 章 脂 类--- ...
    本站小编 免费考研网 2019-03-28
  • 芸芸视频考研生物化学复习笔记
    第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...
    本站小编 免费考研网 2019-03-27
  • 生物化学工程复习资料加强版,考研复习总结资料
    生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...
    本站小编 免费考研网 2019-03-25
  • 强化农学生物化学辅导讲义
    一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...
    本站小编 免费考研网 2019-03-25
  • 南开大学2019年微生物学、生物化学与分子生物学接受调剂生
    一、接收专业与范围:接收调剂专业:微生物学;生物化学与分子生物学;接收调剂生第一志愿报考学院:生命科学学院(理学专业);接收调剂生需满足的分数线:政治>=50英语>=50专业课一>=80专业课二>=80总分>=310。二、调剂报名:申请调剂的考生请于3月19日下午到生命科学学院研究生办公室领取《调剂 ...
    本站小编 FreeKaoyan 2019-03-20
  • 生物化学(第三版)课后习题详细解答
    生物化学(第三版)课后习题详细解答 第三章 氨基酸 提要 -氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L型的。但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质 ...
    本站小编 免费考研网 2019-03-17
  • 西安交通大学833生物化学基础考研真题_重点节选
    一、西安交通大学833生物化学基础考研真题节选图片 题目一 题目二 二、西安交通大学833生物化学基础考研真题考察重点知识节选 单糖的结构 大多数单糖都是手性化合物。单搪构型是指分子中离M墓碳最远的那个手性碳原子的构型。 1.对映异构体:一个不对称碳原子的取代基在空间里的两种取向是物体与镜像的关系.不 ...
    本站小编 免费考研网 2019-03-16
  • 吉林大学338生物化学考研真题_重点节选
    一、吉林大学338 生物化学考研真题节选图片 题目一 题目二 二、 吉林大学338 生物化学考研真题考察重点知识节选 光面内质网(SER):无核枯体颗粒附着的内质网,呈分枝小管状或泡状。其功能主要是合成磷脂和胆固醉。 此外在不同类型细胞中的光面内质网还担负其它复杂的功能(如在肝细胞中起解毒的作用,在肌细胞 ...
    本站小编 免费考研网 2019-03-16
  • 中国农业大学专业辅导班复习资料(生物化学)
    中国农业大学专业辅导班复习资料(生物化学) 第一章,蛋白质 1.蛋白质的生物学功能是什么? 2.蛋白质的元素组成特点及其应用如何? 3.氨基酸的分类有哪几种方法?按侧链R基团分类的理由是什么? 4.蛋白质的分子组成有什么特点? 5.何为蛋白质氨基酸?何为非蛋白质氨基酸? 6.氨基酸有什么 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学食品专业研究生考试生物化学总复习题
    一,概念题(每题2分,共14分) 糖有氧氧化 脂肪酸-氧化 鸟氨酸循环 酮体 限制性内切酶 中心法则 联合脱氨基 氮的正平衡 糖异生 DNA的变性 共价调节 Tm值 核糖体 引发体 冈崎片断 二,填空题(每空1分,共50分) 1.糖酵解有 步脱氢反应和 步底物磷酸化反应。 2.18C的饱和脂肪酸 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学食品学院研究生考试生物化学名词解释
    生物化学名词解释 第一章 氨基酸和蛋白质 氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在-碳上。 必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 非必需氨基酸(nonessential amino acid):指 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学生物学院生物化学总复习题
    生物化学习题 名词解释 糖原;半纤维素;琼脂糖;糖蛋白;糖肽键;糖苷;氨基酸pI;桑格反应;艾德曼反应;HPLC;阳离子交换剂;分配系数;肽键;多肽链;艾德曼降解;-螺旋;-折叠片;-转角;二面角;Ramachandran 构象图;蛋白质一级结构;二级结构;超二级结构;三级结构;结构域;亚基;四级结 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学生物化学考研复习习题含答案
    中国农业大学生物化学习题集 第一章 蛋白质化学 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少? A.2.00g  B.2.50g  C.6.40g  D.3.00g   E.6.25g 2.下列含有两个羧基的氨基酸是: A.精氨酸 B.赖氨酸 C.甘氨酸  D.色氨酸  E.谷氨酸 3.维持蛋白质二级结构 ...
    本站小编 免费考研网 2019-03-13
  • 中科院水生所2012生物化学硕士考试专业课试题
    中国科学院研究生院水生生物研究所 2012年招收攻读硕士学位研究生入学考试试题 生物化学 一、名词解释(共30分,每小题3分) 1. 超分子复合物 (supermolecular complexe): 2. 多巴胺(dopamine): 3. 旋光活性(optical activity): 4. 两性离子(zwitterions): 5. 加压素(vasopressin): 6. 免疫印迹( ...
    本站小编 免费考研网 2019-03-13
  • 中山大学医学院生物化学本科考试试卷
    以下内容为生化期末考试复习材料,根据95-08历年考试大题关键词涉及相关知识点频率排序。★数量仅代表出现次数,与重要性无关。 1. 胆汁酸、肝肠循环相关,胆红素代谢 ★★★★★★★★★ 胆汁酸(bile acids):存在于胆汁中一大类胆烷酸总称,以钠盐或钾盐的形式存在,即胆汁酸盐,简称胆盐。有游离型 ...
    本站小编 免费考研网 2019-03-12